

Convertisseur thermosolaire: application à la production d'eau chaude sanitaire ou « chauffe-eau solaire »

Vincent Élie, Clément Marmion, Frédéric Élie

janvier 2015

CopyrightFrance.com

La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre des études scolaires et supérieures, est INTERDITE. Seuls sont autorisés les extraits, pour exemple ou illustration, à la seule condition de mentionner clairement l'auteur et la référence de l'article.

Abstract : On peut obtenir de l'eau chaude sanitaire (ECS) en utilisant directement la chaleur fournie par le rayonnement thermique du Soleil. Le principe de base est simple: l'eau chaude est produite par un capteur solaire qui convertit l'énergie du rayonnement du Soleil, récupérée à la surface terrestre, en énergie thermique servant à chauffer l'eau en circulation dans un serpentin ou un réseau de tuyaux. Un tel capteur est aussi appelé convertisseur thermosolaire.

On qualifie l'eau chaude produite de « sanitaire » (ECS) parce que la température obtenue n'excède pas 90°C, ce qui correspond à l'usage domestique classique: eau chaude de consommation, chauffage des locaux. On la distingue ainsi de l'eau chaude à très haute température, pouvant par exemple fournir une vapeur d'enthalpie très élevée, capable d'actionner des turbines pour la production d'énergie électrique. Même si la source est la même que pour l'ECS, à savoir l'énergie fournie par le rayonnement solaire, la grande différence est que, dans le cas de l'ECS, la chaleur fournie à l'eau dans le serpentin résulte d'une cascade de processus physiques qui font intervenir des phénomènes de transfert thermique autres que le seul transfert par rayonnement thermique. La dégradation successive de l'énergie fournie par celui-ci dans la structure du convertisseur fait que le rendement dit de conversion du système est d'autant plus faible que la température d'entrée de l'eau est plus grande; de sorte que, pour une certaine température d'entrée de l'eau, dite température de stagnation, le rendement devient nul. Or dans une installation d'ECS, l'eau utilisée pour le chauffage des locaux circule en circuit fermé, et donc celle qui revient dans le capteur n'est jamais très froide. La température de stagnation est celle à partir de laquelle l'eau qui entre dans le dispositif ne reçoit plus de chaleur supplémentaire: il s'ensuit que la température de sortie est égale à celle de l'entrée. la chaleur de l'eau dans le circuit d'utilisation est maintenue, mais elle n'augmente plus.

Il est donc fondamental d'identifier les processus de transfert thermique qui interviennent en cascade dans le convertisseur, depuis le rayonnement solaire incident jusqu'au fluide caloporteur (l'eau en sortie) qui circule dans le serpentin. On en distingue trois:

- transfert par rayonnement thermique;
- transfert par conduction thermique;
- transfert par convection ou diffusion thermique.

Dit simplement, ces trois sortes de transfert thermique affectent le milieu où ils se propagent de trois manières différentes:

- le transfert par rayonnement thermique met en jeu l'interaction entre la matière et le rayonnement électromagnétique;
- le transfert par conduction thermique est associé à la transmission d'énergie par vibrations moléculaires ou cristallines autour d'une position moyenne;
- le transfert par convection ou diffusion traduit un mouvement d'ensemble du milieu par gradient

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 1/111

de densité et vitesse d'écoulement (il affecte donc surtout les milieux fluides: gaz ou liquides). Ces processus de transfert affectent de manière différente les diverses structures du capteur. De manière simplifiée, ces structures correspondent aux « couches » ou étages suivants du capteur:

- la face directement exposée au Soleil, formée d'une cavité fermée par une lame transparente au rayonnement thermique solaire (généralement une vitre);
- un absorbeur, placé au fond de la cavité, constitué d'une plaque dont le rôle est d'absorber l'énergie thermique fournie par la cavité, afin de la transmettre à un serpentin, au contact de lui, où circule le fluide caloporteur (l'eau);
- un isolant, placé à l'arrière du capteur, dont le rôle est de minimiser les pertes de chaleur issue de l'absorbeur et du serpentin, de sorte que la chaleur puisse rester confinée autant que possible dans ces milieux;
- les parois latérales du capteur, conçues de manière à minimiser les pertes thermiques, elles aussi;
- le milieu situé à l'arrière de l'isolant: ça peut être le support sur lequel le capteur est fixé (toit, ...) ou bien l'air ambiant.

L'eau circule dans le ou les tuyaux de deux manières possibles: soit par un mécanisme qui résulte de l'écart de température entre les locaux auxquels elle cède la chaleur (chauffage) et l'entrée du capteur donc par convection naturelle – soit par convection forcée, c'est-à-dire par une pompe. On a dit que le rendement de conversion diminue quand la température d'entrée augmente et s'approche de la température de stagnation (ce qui justifie aussi l'appellation « capteur solaire basse température » pour ce type de dispositif). La température de stagnation correspond à la température que l'on atteint dans le circuit d'utilisation au bout d'une durée suffisante. Or on verra qu'elle dépend directement, non pas du débit, mais du flux thermique incident et de la conductance des pertes thermiques. Plus celle-ci est petite (peu de pertes) plus elle est grande, ce qui est intéressant. On a donc intérêt à bien isoler le capteur et à améliorer le transfert par conduction thermique entre l'organe récepteur (l'absorbeur) et l'eau des tuyaux. En outre, on verra aussi que le rendement de conversion augmente avec le débit. Donc, au début du cycle (mise en circulation de l'eau), il est utile d'augmenter le débit pour accélérer la production de chaleur dans l'eau. En revanche, on verra aussi que, quelle que soit la température d'entrée de l'eau, un débit important conduit à une température de sortie de l'eau qui reste proche de celle d'entrée, et si celle-ci est froide, l'eau utilisée dans le circuit reste aussi froide, ce qui n'est pas le but recherché. Il y a donc un compromis à trouver sur le débit pour à la fois bénéficier au départ d'un taux de production de chaleur suffisant, et éviter que l'eau à la sortie du capteur reste insuffisamment chaude.

Le rendement thermique de conversion est défini comme le rapport du flux thermique reçu par le fluide caloporteur (l'eau) et du flux solaire incident. Le flux thermique reçu par le fluide caloporteur dépend de très nombreux facteurs: la géométrie et les propriétés thermiques des différentes couches du capteur, ainsi que le flux solaire incident. Ces facteurs intègrent les différents processus de transfert thermique entre les constituants du capteur identifiés plus haut.

Quant au flux solaire incident, il fait intervenir, entre autres, les influences de la position du Soleil par rapport au capteur, et l'environnement ambiant, sur le bilan de rayonnement thermique. A ces influences, il faut ajouter, au niveau de la cavité, l'effet de serre responsable du fait que l'énergie thermique incidente reste piégée dans la cavité et peut ainsi être transmise à l'absorbeur.

Dans le présent article, nous énoncerons l'expression du rendement de conversion (relatif au fluide caloporteur), et nous détaillerons (en Annexes) chacun des processus qui interviennent sur ces facteurs. Une manipulation expérimentale sommaire, obtenue à l'aide d'une maquette de capteur, fabriquée de toute pièce, permet de comparer les résultats de mesure avec la relation quasiment linéaire qui relie le rendement thermique à la température d'entrée de l'eau, et ceci, pour deux sortes d'isolant et pour différentes inclinaisons du capteur par rapport aux rayons incidents du Soleil.

SOMMAIRE

1 – Chauffe-eau solaire (ou convertisseur thermosolaire basse température)

- 1.1 Principe de fonctionnement
 - 1.1.1 Structure générale du convertisseur
 - 1.1.2 Les 3 processus de transfert thermique qui interviennent dans les différentes parties du convertisseur
- 1.2 Rendement thermique
 - 1.2.1 Rendement de conversion

- 1.2.2 Rendement relatif au fluide caloporteur
- 1.2.3 Exemples de calcul
- 1.3 Sur quels facteurs agir pour obtenir un rendement optimal?
- 2 Expérimentation
 - 2.1 But de l'expérimentation
 - 2.2 Maquette
 - 2.3 Réalisation des mesures et résultats
 - 2.4 Conclusion

ANNEXES

- A1 Transfert thermique par rayonnement, effet de serre
 - A1.1 Loi du rayonnement (Planck), puissance thermique rayonnée (Stefan)
 - A1.2 Emittance, émissivité, loi de Kirchhoff
 - A1.3 Importance de la sélectivité pour l'absorbeur du capteur solaire
 - A1.4 Rôle et importance de la couverture transparente (vitrage), effet de serre
 - A1.5 Deux cas de figure quotidiens d'application du transfert par rayonnement thermique
 - A1.5.1 La voiture exposée au Soleil
 - A1.5.2 Sensation de froid près d'une fenêtre
- A2 Transfert thermique par convection
 - A2.1 Phénomène convectif
 - A2.2 Coefficients de transfert en convection forcée et en convection naturelle
- A3 Transfert par conduction thermique
 - A3.1 Loi de Fourier
 - A3.2 Diffusivité et effusivité
 - A3.3 Application à l'isolant du capteur solaire
- A4 Influence de la hauteur du Soleil et de l'inclinaison du capteur solaire
- A5 Résistances thermiques et schémas équivalents
 - A5.1 Résistance thermique
 - A5.2 Coefficient de transmission
 - A5.3 Déperditions thermiques

A5.4 – Paroi dont la face externe est exposée au Soleil, et la face interne donne sur l'intérieur

- A5.5 Équilibre thermique d'une plaque métallique exposée au Soleil
- A5.6 Quelques résultats pratiques
- A6 Calcul du champ thermique de l'absorbeur utile pour la détermination du rendement relatif au fluide caloporteur

Références

1 – CHAUFFE-EAU SOLAIRE (OU CONVERTISSEUR THERMOSOLAIRE BASSE TEMPÉRATURE)

1.2 – Principe de fonctionnement

1.1.1 – Structure générale du convertisseur

Comme indiqué dans l'introduction, le principe de la structure d'un convertisseur thermosolaire basse température est représenté à la **figure 1**.

figure 1 – structure globale d'un convertisseur thermosolaire basse température (chauffe-eau solaire)

On y distingue les différents « étages »:

- La face directement exposée aux rayons incidents du soleil: généralement une lame transparente (vitrage) formant la couverture (c) qui ferme la cavité. La température de l'air ambiant (a), côté soleil, est notée T_a. Le rayonnement solaire, quant à lui, correspond à une température de rayonnement du ciel notée T₀. La couverture, chauffée, atteint une température d'équilibre notée T_c.
- La cavité, formée par une couche d'air emprisonnée d'épaisseur b.
- L'absorbeur, assimilé à une plaque notée (P), portée à sa température d'équilibre T_P. La chaleur récupérée par l'absorbeur est transmise en partie à un réseau de serpentins dans lequel circule le fluide caloporteur (l'eau, qui entre par la partie la plus basse du capteur, à la température d'entrée T_{ef}, et qui ressort par la partie la plus haute à la température T_{sf}; en principe, on doit avoir T_{sf} > T_{ef} par suite du chauffage de l'eau apporté par l'absorbeur).
- L'isolant (i) constitué d'une couche d'épaisseur L placée à l'arrière de l'absorbeur. La face de l'isolant exposée au milieu arrière est à la température T_i.
- Le milieu arrière (a') au contact duquel est l'isolant. Il peut être encore de l'air, ou un support du capteur. Sa température ambiante est T_{a'}.

Le capteur est incliné d'un angle (i) sur l'horizontale.

On note ϕ_{ST} le flux thermique incident que reçoit la couverture (puissance thermique par unité de surface).

Ces notations seront conservées tout au long de l'article et ses annexes.

La figure 2 montre la succession des étages, avec la présence du serpentin où l'eau circule, au contact

de l'absorbeur.

figure 2 – les différents « étages » du convertisseur

On peut déjà faire les remarques et se poser les questions suivantes:

a) Pourquoi faire entrer l'eau froide par le bas et faire sortir l'eau chaude par le haut? - Piste de réponse: Dans le sens inverse l'eau s'écoulerait plus vite par gravité et l'équilibre du transfert thermique de la plaque de l'absorbeur n'aurait pas le temps d'être atteint.

b) Pourquoi des tuyaux plus fins disposés verticalement sous l'absorbeur? - Piste de réponse: Afin d'obtenir une température homogène et un échange de chaleur uniforme avec l'absorbeur. Mais cela introduit des pertes de charge et des problèmes de jonction.

c) Pourrait-on faire mieux épouser l'absorbeur aux tuyaux pour améliorer le transfert thermique absorbeur \rightarrow fluide caloporteur (figure 3)?

figure 3 – augmenter la surface de contact entre l'absorbeur et les tuyaux du fluide caloporteur

Piste de réponse: L'échange thermique avec l'absorbeur est plus important, mais aussi les pertes par convection avec l'air intérieur: il doit donc exister un juste milieu, un compromis, pour la surface d'échange entre l'absorbeur et les tuyaux.

d) A-t-on intérêt à utiliser un double vitrage pour la couverture (ce qui améliorerait peut-être l'effet de serre) par rapport au gain sur le rendement et le surcoût technologique?

e) Quelle est l'influence du choix de l'isolant sur un gain du rendement thermique?

f) Quel est l'effet de la vitesse d'écoulement de l'eau sur la température de sortie T_{sf}, et donc sur le rendement ramené à l'eau? Autrement dit, quel rôle joue le débit du fluide caloporteur sur le rendement?

1.1.2 – Les 3 processus de transfert thermique qui interviennent dans les différentes parties du convertisseur

Trois processus de transmission de la chaleur interviennent dans le fonctionnement du convertisseur:

- rayonnement thermique;
- conduction thermique;
- convection.

Ils affectent les différents étages avec une importance et un mode qui dépendent directement de la

nature et de la structure de ceux-ci.

De manière générale, les flux de ces trois types de transmission thermique, ainsi que leurs combinaisons, à travers un milieu délimité par une face A et une face B, respectivement aux températures T_A et T_B supposées assez proches, et dans le sens $A \rightarrow B$, peuvent se mettre sous la forme linéarisée suivante:

$$\Phi_{AB} = k_{AB} (T_A - T_B) \quad (0.1)$$
$$T_A \qquad \Phi_{AB} \qquad T_B$$

Le coefficient k_{AB}, que l'on note aussi parfois h_{AB}, est appelé *coefficient de transfert thermique*, son inverse est la *résistance thermique*, qui permet de représenter le dispositif comme un circuit électrique équivalent:

$$R_{AB} = 1/k_{AB}$$

 k_{AB} est généralement une fonction plus ou moins compliquée des températures T_A , T_B , des propriétés thermiques et de la géométrie du milieu compris entre les interfaces A et B. L'expression linéarisée du flux est donc un artifice qui permet de faire apparaître la résistance thermique, ce qui est intéressant dans les cas limites où celle-ci, ou k_{AB} , peuvent être considérés comme constants, ce qui se produit lorsque les températures T_A et T_B ont un écart relativement faible.

On rappelle que le flux thermique représente une puissance par unité de surface qu'elle traverse: il est donc exprimé en watts par mètre carré (W/m²).

Recensons dès à présent, sans plus de justifications, les divers modes de transfert thermique qui siègent aux différents étages du convertisseur (**figures 1 et 2**):

- Entre l'air extérieur (a) et la vitre (c), deux types de transfert:
 - par convection, elle affecte la couche d'air au voisinage immédiat de la vitre:

flux thermique de convection entre (a) et (c): $\Phi_{caC} = h_{caC} (T_c - T_a)$ (0.2)

• par rayonnement: $\Phi_{caR} = h_{caR} (T_c - T_a)$ (0.3)

Le flux total est la somme des deux flux précédents: $\varphi_{ca} = h_{ca} (T_c - T_a) = \varphi_{caC} + \varphi_{caR}$; le coefficient de transfert est donc la somme des coefficients de transfert par convection et par rayonnement:

$$\frac{h_{ca} = h_{caC} + h_{caR}}{(0.4)}$$

Nous verrons, en **Annexes 1 et 2**, que ces coefficients dépendent des propriétés environnementales selon:

• pour la convection, dans les gammes d'emploi usuelles du convertisseur:

$$h_{caC} = 5,7+3,8v_a$$
 (W/m²/K) (0.5)

où v_a est la vitesse d'écoulement de l'air ambiant (vent) en m/s.

• pour le rayonnement thermique:

$$h_{caR} = \frac{\varepsilon_c \sigma (T_c^4 - T_0^4)}{T_c - T_a}$$
 (W/m²/K) (0.6)

où les températures sont exprimés en Kelvin (K); ε_c est l'émissivité de la couverture (coefficient sans dimension, de l'ordre de 0,8 pour le verre), et σ est la constante de Stefan: σ = 5,67.10⁻⁸ Wm⁻²K⁻⁴. T₀ est la température de rayonnement thermique du ciel; elle peut être reliée à la température de l'air ambiant, aisément mesurable, par les relations suivantes:

relation de Schwirbank (1963): $T_0 = 0.0552 T_a^{1.5}$ (0.7) relation de Whillier (1967): $T_0 = T_a - 6$ (0.8)

Remarque importante (et qui servira pour l'ensemble de l'article): le flux thermique total entre (a) et (c) est la somme des flux: $\phi_{ca} = h_{ca} (T_c - T_a) = \phi_{caC} + \phi_{caR}$; or les transferts par convection et par rayonnement entre l'air et la couverture s'effectuent en parallèle (c'est-à-dire simultanément, **figure 4**), d'où, en représentation électrique équivalente, les courants, c'est-à-dire les flux ϕ , s'ajoutent. Il s'ensuit que ce sont les conductances thermiques (inverses des résistances) qui s'ajoutent, et non les résistances:

- Entre la vitre (c) et la plaque (P) de l'absorbeur, deux types de transfert thermique:
 - Transfert par convection naturelle, dû au mouvement de l'air dans la cavité provoqué par l'écart de température entre la vitre et la plaque:

$$\Phi_{PcN} = h_{PcN} (T_P - T_c)$$
 (0.10)

On verra en Annexe 2 que le coefficient de transfert h_{PCN} est égal à:

$$h_{PcN} = \frac{Nu \cdot \lambda}{b}$$
 (0.11)

où λ est la *conductivité thermique* de l'air dans la cavité (λ = 0,025 W/m/K), b l'épaisseur de celle-ci et Nu est le *nombre de Nusselt* (sans dimension). Les valeurs de Nu dépendent d'un autre nombre sans dimension, le *nombre de Grashof* Gr défini par:

$$Gr = \frac{g b^3}{v^2} \frac{T_P - T_c}{T_m}$$
(0.12)

où g est l'accélération de la pesanteur, v la viscosité cinématique de l'air contenu dans la cavité, T_m est la température moyenne de l'air dans la cavité: $T_m = (T_P + T_c)/2$. La recirculation de l'air entre la vitre et la plaque de l'absorbeur, sous l'action de la pesanteur, dépend directement de l'inclinaison de cette cavité par rapport à l'horizontale. On démontre en effet, pour les gaz: - pour Gr > 80000, le nombre de Nusselt s'exprime par:

 $Nu = 2,5 + 0,0133 (90^{\circ} - i)$ (0.13)

où l'inclinaison (i) est exprimée en degrés (°).

- pour Gr < 1700+47,8*i* (°), le nombre de Nusselt est une constante: Nu = 1,013

- pour des valeurs intermédiaires de Gr: 1700+47,8i < Gr < 80000, le nombre de Nusselt

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 7/111

dépend de Gr et de l'inclinaison à la fois selon la formule:

$$Nu = (0,06+3.10^{-4}(90^{\circ}-i))Gr^{(1/3)}$$
(0.14)

C'est la configuration généralement adoptée pour les convertisseurs.

• Transfert par rayonnement thermique entre la vitre et la plaque. On montre (**Annexe 2**) que le flux est égal à:

$$\Phi_{PcR} = h_{PcR} (T_P - T_c) \quad (0.15)$$
avec:
$$h_{PcR} \approx \frac{4\sigma T_m^3}{\frac{1}{\epsilon_P} + \frac{1}{\epsilon_c} - 1} \quad (0.16)$$

où T_m est la température moyenne dans la cavité et ϵ_P est l'émissivité de la plaque absorbeur.

Le flux thermique total entre la vitre et la plaque est alors, comme précédemment:

$$\Phi_{Pc} = \Phi_{PcN} + \Phi_{PcR} = k_{Pc} (T_P - T_c)$$
(0.17)

avec la conductance: $k_{PC} = h_{PcN} + h_{PcR}$.

- *Entre la plaque (P) de l'absorbeur et la face externe de l'isolant (i)*, le transfert est seulement par conduction thermique:

$$\varphi_{iP} = k_{iP} (T_i - T_P)$$
 (0.18)

où l'on démontre que (Annexe 3):

$$k_{iP} = \frac{\lambda_i}{L}$$
 (0.19)

 λ_i étant la conductivité thermique de l'isolant, et L son épaisseur. Si l'isolant est constitué de plusieurs couches de matériaux différents (n) l'expression précédente doit être remplacée par:

$$k_{iP} = \frac{1}{\sum_{n} \frac{L_n}{\lambda_n}} \quad (0.20)$$

- Entre la face externe de l'isolant (i) et l'air extérieur (a'), seule la convection intervient:

avec, de nouveau: $h_{a'iC} = 5,7 + 3,8 v_{a'}$ où $v_{a'}$ est la vitesse du vent à l'arrière (a') du convertisseur.

1.2 – Rendement thermique

Deux définitions du rendement sont abordées, selon l'endroit du convertisseur où l'on considère le flux de chaleur récupéré. Le flux de chaleur initialement disponible, qui se transforme ensuite par une cascade de processus à travers les étages du convertisseur, est initialement celui apporté par le rayonnement solaire ϕ_{ST} . Le rendement thermique est le ratio du flux de chaleur récupéré et de ce flux initialement disponible.

Ces rendements sont:

– le rendement de conversion, noté η : il est relatif au flux d'énergie thermique φ_u (flux utile)

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 8/111

emmagasinée dans le fluide caloporteur, au contact de l'absorbeur. Donc: $\eta = \varphi_u / \varphi_{ST}$.

 le rendement relatif à la température d'entrée du fluide caloporteur, noté η": il est relatif au flux thermique lié au transport par l'écoulement de la quantité de chaleur entre l'entrée et la sortie du convertisseur, ce flux est noté φ'_u. Donc: η" = φ'_u / φ_{st}.

Dans les deux cas, la connaissance de ϕ_{ST} , flux solaire disponible sur la face exposée du convertisseur, est indispensable. Or ce flux dépend de la hauteur du Soleil et de l'orientation de la couverture (c) du convertisseur par rapport aux rayons incidents.

Cette connaissance nécessite des calculs d'astronomie de position du Soleil relativement au lieu du convertisseur à la surface de la Terre, qui seront détaillés en **Annexe 4**.

1.2.1 – Rendement de conversion

Le flux solaire récupéré au niveau de la plaque de l'absorbeur (P), noté ϕ_{SP} , et qui servira à chauffer le fluide caloporteur, résulte directement du flux solaire reçu au niveau de la couverture (c), noté ϕ_{ST} , modifié par la présence de la couverture transparente, puis par la capacité de la plaque à l'absorber. On montre en **Annexe 1** que l'on a:

$$\Phi_{SP} = \varepsilon_P * \tau_c \Phi_{ST} \quad (0.22)$$

avec:

 ϵ^*_P : émissivité de la plaque dans le visible et le proche infrarouge (il s'agit de l'émissivité ϵ_P , que l'on a déjà évoquée, mais limitée à cette partie du spectre). Elle intervient dans l'absorption par la plaque du flux thermique incident qui est transmis par la couverture.

 τ_c : coefficient de transmission de la couverture. Il intervient dans la transmission par le vitrage du rayonnement solaire incident vers la cavité.

 φ_{sT} : flux solaire total incident disponible à la face de la couverture, comme on l'a déjà introduit. Il diffère du flux solaire disponible à la surface terrestre, noté $\varphi_{s,0}$, parce qu'il tient compte de la position du Soleil dans le ciel, du lieu terrestre du convertisseur, et de l'orientation de celui-ci par rapport aux rayons solaires. On démontre, en **Annexe 4**, qu'il est égal à:

$$\Phi_{ST} = \Phi_{s,0} \cos\theta \quad (0.23)$$

où cos θ , encore noté $R_G(i, \delta, \gamma, \lambda_T, AH)$ est une fonction de l'inclinaison i du capteur par rapport au sol (supposé horizontal et plat), de la déclinaison du soleil δ , de l'angle azimut du capteur par rapport au soleil γ , de la latitude géographique du lieu λ_T , et de l'angle horaire du soleil AH.

Ce flux incident, ϕ_{SP} , donne lieu dans le capteur à 3 types de flux:

- flux des pertes thermiques, transférées vers l'environnement par convection et rayonnement: φ_a;
- flux d'énergie emmagasinée dans le fluide caloporteur (énergie d'utilisation): φ_u;
- flux absorbé par le capteur, nécessaire à la montée en température (due aux inerties thermiques dans les différents étages), donc flux transitoire: φ_t.

Donc:

$$\varphi_{SP} = \varepsilon_P * \tau_c \varphi_{ST} = \varphi_u + \varphi_a + \varphi_t \quad (1)$$

Par définition, le *rendement de conversion* est le ratio:

$$\eta = \frac{\text{énergie d'utilisation}}{\text{énergie solaire disponible}}$$

soit:

$$\eta = \frac{\int_{0}^{\Delta t} \varphi_{u} dt}{\int_{0}^{\Delta t} \varphi_{ST} dt}$$
(2)

sur la durée du transitoire Δt . Pour s'affranchir de cette durée, on définit aussi le rendement de conversion instantané (rapport des puissances et non plus des énergies):

$$\eta' = \frac{\text{flux d'utilisation}}{\text{flux solaire disponible}} = \frac{\Phi_u}{\Phi_{ST}}$$
 (3)

On appelle **rendement optique** du capteur le taux de transformation de l'énergie solaire incidente en énergie disponible au niveau de la plaque de l'absorbeur:

$$v *= \tau_c \varepsilon_P^*$$
 (4)

et donc: $\Phi_{SP} = v^* \Phi_{ST}$; en supposant un régime stationnaire où $\phi_t = 0$, (1) donne:

$$\eta' = \frac{\Phi_u}{\Phi_{ST}} = \varepsilon_P^* \tau_c - \frac{\Phi_a}{\Phi_{ST}}$$

soit:

$$\eta'$$
(stationnaire)= $\nu * - \frac{\Phi_a}{\Phi_{ST}}$ (5)

Les pertes sont produites entre l'air ambiant (a) et la plaque de l'absorbeur (P); par conséquent le flux correspondant ϕ_a est, dans l'approximation linéaire introduite plus haut, proportionnel à la différence de température entre ces deux milieux:

$$\phi_a = k_a (T_P - T_a) \quad (6)$$

où $k_a = 1/R_a$ est le coefficient de transfert correspondant, ou *conductance thermique*, R_a étant la résistance thermique globale interposée entre (a) et (P), dont on donnera une démarche de calcul basée sur les schémas équivalents. D'après (6) le problème se ramène en effet à déterminer k_a , puisque T_P et T_a sont aisément mesurables.

De (5) et (6) il vient, en stationnaire:

$$\eta' = v * -k_a \frac{T_P - T_a}{\varphi_{ST}} \quad (7)$$

Cette expression (7) du rendement de conversion permet de justifier le caractère « basse température » du convertisseur thermosolaire.

En effet, elle montre que le rendement diminue de manière quasi linéaire avec l'écart de température entre l'extérieur (a) et l'absorbeur (P), jusqu'à s'annuler pour une valeur de stagnation T_{Pmax} de la plaque (**figure 5**):

$$\frac{T_{Pmax} - T_a}{\varphi_{ST}} = \frac{\nu *}{k_a} \quad (0.24)$$

figure 5 – rendement de conversion

η' s'annule, donc le fluide caloporteur ne reçoit plus de chaleur supplémentaire (stagnation) lorsque la température de l'absorbeur atteint T_{Pmax} , ou ce qui revient au même, lorsque la température de stagnation adimensionnelle est atteinte:

$$\theta^* = \frac{T_{Pmax}}{T_a} = 1 + \frac{\nu^* \varphi_{ST}}{k_a T_a}$$
(8)

En conclusion: il est inutile de trop chauffer la plaque de l'absorbeur car le rendement thermique de conversion baisse: c'est pourquoi les convertisseurs thermosolaires ne sont intéressants qu'à « basse température », c'est-à-dire pour l'eau chaude sanitaire (ECS) ou le chauffage des habitations.

La relation (8) montre l'importance de connaître le flux solaire disponible à la face de la couverture transparente (c), ϕ_{ST} , ce que l'on verra à l'**Annexe 4**, le rendement optique v^{*}, qui dépend du transfert par rayonnement à travers la vitre et l'effet de serre (que l'on développe en **Annexe 1**), et de la conductance k_a dont une méthode de calcul est donnée ci-après, basée sur les schémas équivalents thermiques.

Principe de calcul de la conductance de perte thermique ka par les schémas équivalents:

A la base, il y a ce que j'appelle une « règle d'or »:

Quand les transferts thermiques ont lieu dans le même milieu, les courants équivalents (c'est-à-dire les flux thermiques) φ_n sont en parallèle et les résistances thermiques vérifient, comme en électricité:

figure 6 – flux thermique dans des milieux identiques parallèles

Quand ils ont lieu dans des milieux différents [1], [2], [3] etc. mais en contact, un même courant ϕ les traverse entre leurs températures aux limites T_A et T_B ($T_A - T_B$ joue le rôle de la tension électrique): ils sont en série et les résistances vérifient:

figure 7 – flux thermique dans des milieux en série

On peut se convaincre de ces résultats aisément:

 Aux bornes de plusieurs milieux parallèles, ayant les mêmes températures aux limites T_A et T_B, les flux thermiques sont:

Le flux total est la somme des flux: $\varphi = k (T_A - T_B) = \varphi_1 + \varphi_2 + \varphi_3 = (k_1 + k_2 + k_3) (T_A - T_B)$ D'où la conductance totale est la somme des conductances partielles (et donc ce sont les inverses des résistances qui s'additionnent):

$$k = k_1 + k_2 + k_3 + \dots$$
 (0.25)

Aux bornes de plusieurs milieux en série, traversés par le même flux thermique mais soumis à leurs limites à des températures différentes, l'égalité des flux donne (dans l'exemple de la figure 7 qui peut se généraliser à un nombre quelconque de milieux en série):

Or la différence de température entre les extrêmes $(T_1 - T_4)$ s'écrit comme la somme des différences de température entre les milieux intermédiaires; par analogie électrique cela revient à poser que, pour des milieux thermiques en série, la tension à leurs bornes est la somme des tensions partielles:

$$T_1 - T_4 = (T_1 - T_2) + (T_2 - T_3) + (T_3 - T_4) = \phi/k = \phi (1/k_1 + 1/k_2 + 1/k_3) = R\phi = \phi (R_1 + R_2 + R_3)$$

Donc la résistance est la somme des résistances intermédiaires en série:

$$R = R_1 + R_2 + R_3$$

$$1/k = 1/k_1 + 1/k_2 + 1/k_3$$
(0.26)

Appliquons ces résultats (la « règle d'or ») à l'ensemble du capteur, afin de déterminer k_a qui intervient dans le rendement de conversion (7):

- De l'air extérieur avant (a) jusqu'à la plaque de l'absorbeur (P), c'est le même courant (φ) qui

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 12/111

traverse:

R_{ca}: résistance vitre-air, et R_{Pc} résistance plaque-vitre: toutes les deux en série donc:

résistance plaque-air : $R_{Pa} = R_{ca} + R_{Pc}$ (0.27)

De la plaque de l'absorbeur (P) jusqu'à l'air externe arrière (a'), c'est le même courant (φ'), différent de (φ), qui traverse:
 De i régistence plaque isolant et P régistence isolant eir arrière; toutes les doux en série denc;

R_{iP}: résistance plaque-isolant, et R_{aïc} résistance isolant-air arrière: toutes les deux en série donc:

résistance plaque-air arrière: $R_{Pa'} = R_{iP} + R_{a'iC}$ (0.28)

Mais $\phi \neq \phi'$ car une partie du flux est allée au fluide caloporteur (ϕ_u), tandis que l'autre partie part en pertes thermiques (ϕ_a). On a donc affaire à deux milieux (air avant-plaque) et (plaque-air arrière) en parallèle), donc les flux s'additionnent pour donner ϕ_a , la puissance perdue (**figure 8**):

$$\varphi_{a} = \varphi + \varphi'$$

Les résistances R_{Pa} et R_{Pa} étant dans ce cas en parallèle, il vient donc:

figure 8 – schéma équivalent des étages du convertisseur thermosolaire

A ce stade de l'article, le coefficient k_a ne sera pas davantage explicité. Il le sera dans les exemples du **paragraphe (1.2.3)** qui nécessite les développements des calculs des transferts thermiques présentés aux **annexes 1, 2, 3**, et de l'**annexe 5** où ces calculs sont appliqués aux transferts thermiques intermédiaires dans les différents étages du capteur.

1.2.2 – Rendement relatif au fluide caloporteur

La plaque de l'absorbeur, en réalité, n'est pas à une température T_P uniforme, à cause de la présence des tuyaux, et T_P n'est pas égale à la température du fluide caloporteur à cause de la conduction thermique de la plaque vers le fluide, et des éventuelles pertes par convection si la plaque épouse partiellement la forme des tuyaux (voir **figure 9**, avec les notations de la géométrie du problème qui interviendront dans les calculs du rendement).

Le long de la hauteur l_y du capteur les profils de température de la plaque et du fluide ont l'allure représentée à la **figure 10**.

Cette fois-ci le flux utile est celui de la chaleur emportée par le fluide entre l'entrée et la sortie: il est noté ϕ'_{u} . Par conséquent, le flux thermique disponible se décompose aussi en:

$$\varphi_{\text{SP}} = \epsilon_{\text{P}}^* \tau_{\text{c}} \varphi_{\text{ST}} = \varphi'_{\text{u}} + \varphi'_{\text{a}}$$

figure 9 – prise en compte des inhomogénéités dues à la présence des tuyaux dans le calcul du rendement relatif au fluide caloporteur

avec ϕ'_a pertes relativement au fluide (et non plus à la plaque):

figure 10 – distribution de température à la plaque de l'absorbeur et dans le fluide caloporteur

Le flux φ'_u est lié au transport par écoulement de la quantité de chaleur entre l'entrée et la sortie; si l'écoulement a pour débit massique q* par unité de surface du capteur, et c_P chaleur massique du fluide, alors:

$$\Phi'_{u} = q * c_{P} (T_{sf} - T_{ef})$$
 (13)

Le rendement instantané relatif au fluide caloporteur est donc:

$$\eta'' = \frac{\Phi'_u}{\Phi_{ST}} \quad (14)$$

Pour déterminer ϕ'_u il faut calculer:

- a) le champ de température $T_P(x,y)$ dans la plaque;
- On suppose $T_P(x,y)$ quasiment constant le long de y (voir courbe **figure 10**) donc on cherche $T_P(x)$.
- b) la puissance absorbée par le fluide, calculée à partir de (a), provenant de la plaque: φ_f.

- c) en écrivant que cette puissance absorbée est égale à la quantité de chaleur prise par le fluide, on déduit la température de sortie T_{sf}, ce qui fournit (13).
- d) le calcul s'achève par l'injection de φ'_u dans η'' .

Tous ces calculs sont développés à l'Annexe 6 et conduisent à l'expression suivante du rendement (14):

$$\eta'' = F_T \left(\nu^* - k'_a \frac{T_{ef} - T_a}{\varphi_{ST}} \right)$$
(15)

F⊤ est le facteur de transfert thermique, il est défini par le rapport:

$$F_T = \frac{\text{flux thermique réel reçu par le fluide}}{\text{flux thermique disponible à l'absorbeur s'il était isotherme à Tef}}$$

et a pour expression:

$$F_T = \frac{q * c_P}{k'_a} \left(1 - \exp\left(-\frac{F k'_a}{q * c_P}\right) \right) \quad (16)$$

dans laquelle F est le *rendement d'irrigation* et vaut:

$$F = \frac{1}{\frac{p_0 k'_a}{P h_{hRfc}} + \frac{p_0}{D_e + 2 X \psi}}$$
(17)

avec:

 p_0 : pas d'écartement des tuyaux: $p_0 = D_e + 2X$

De: diamètre extérieur des tuyaux; 2X: distance bord à bord entre les tuyaux

 $\psi = \frac{\tanh(\omega X)}{\omega X}$ où: $\omega^2 = \frac{k'_a}{\lambda_p L_p}$; λ_P conductivité thermique de la plaque absorbeur, L_P son

épaisseur

 $P = \pi D_i$: périmètre mouillé de l'eau dans les tuyaux, D_i diamètre intérieur des tuyaux

 h_{Rfc} : coefficient de transmission de la chaleur entre les fixations du tuyau et le fluide par convection thermique; il dépend de la vitesse d'écoulement du fluide.

 $q^* = \frac{q}{p_0 L_y}$ débit massique du fluide par unité de surface du capteur (exprimé en kg/s/m²), avec: q

débit massique du fluide dans un tuyau (kg/s), L_y longueur d'un tuyau ($L_y = l_y$ de la figure 9).

Dans le cas idéal où F_T et k'a sont constants, la relation (15) entre η " et T_{ef} (température d'entrée du fluide caloporteur) est une droite, comme pour le rendement de conversion (**figure 11**):

figure 11 – rendement thermique relatif à la température d'entrée du fluide caloporteur

Comme pour le rendement de conversion, le rendement η " s'annule lorsque la température d'entrée du fluide caloporteur atteint une valeur maximale T_{efmax}, appelée encore température de stagnation, et telle que:

$$\frac{T_{efmax} - T_a}{\Phi_{ST}} = \frac{\nu^*}{k'_a}$$
(18)

et les mêmes conclusions qu'au point 1.2.1 s'appliquent.

1.2.3 – Exemples de calcul

a) Exemple de calcul du rendement de conversion:

Énoncé: - Déterminer le rendement instantané de conversion η' d'un capteur solaire plan, localisé à Bordeaux (latitude λ_T = 44°50' = 44,83°), à la date du 17 novembre, heure 11h TSV (temps solaire vrai H), avec les conditions suivantes: météo:

- ciel clair et pur
- température ambiante $T_a = 13^{\circ}C$
- vent parallèle à la face du capteur, vitesse v_a = 5 m/s

caractéristiques du capteur:

- orientation plein sud ($\gamma = 0^{\circ}$)
- inclinaison i = 36°
- albédo du sol α_G = 0,3
- température de l'absorbeur $T_P = 55^{\circ}C$
- coefficient d'émission de l'absorbeur dans l'infrarouge $\epsilon_P = 0.95$
- coefficient d'émission de la vitre dans l'infrarouge ε_c = 0,83
- rendement optique $v^* = 0,76$
- isolant: épaisseur L = 10 cm, conductivité thermique λ_i = 0,045 W/m/K, température de surface externe de l'isolant T_i = T_a = T'_a (égale à la température ambiante, qui est la même à l'avant et à l'arrière du capteur).
- épaisseur de la cavité: b = 2,5 cm

SOLUTION:

Le rendement de conversion est donné par la relation (7): $\eta' = \nu^* - k_a \frac{T_P - T_a}{\phi_{ST}}$

Les quantités connues sont v^{*}, T_P et T_a : il faut donc calculer ϕ_{ST} et k_a .

1 – calcul de φ_{ST} :

Le flux solaire incident disponible sur la face avant du capteur est obtenu à partir de la relation (0.23) corrigée des effets de diffusion du sol et de la diffusion du ciel comme indiqué par la relation (A4.27):

 $\varphi_{ST} = \varphi_{S,0} \cos\theta + \frac{1 - \cos i}{2} \alpha_G \varphi_{ST}(i=0) + \frac{1 + \cos i}{2} \varphi_{SC}''(i=0)$ (0.29)

où α_G est l'albédo du sol. La surface étant orientée plein sud, le facteur cosθ est donné à partir de (A4.6):

 $\cos\theta = \cos i \sin h + \sin i (\cos \delta \sin \lambda_T \cos AH - \sin \delta \cos \lambda_T) \quad (0.30)$

Dans (0.29) et (0.30) les grandeurs à déterminer sont:

- le flux incident à inclinaison nulle $\varphi_{ST}(i=0)$
- le flux de diffusion du ciel à inclinaison nulle φ"sc(i=0)
- la hauteur du soleil sur l'horizon h
- la déclinaison du soleil δ
- l'angle horaire AH

Les formules qui permettent de les calculer sont démontrées et données en Annexe 4. On a:

- angle horaire AH: (A4.12) donne $AH(\circ)=15(12-H(h))=15\times(12-11)=15^{\circ}$
- déclinaison δ: on utilise par exemple la formule de Fletcher (A4.9) avec le numéro du jour J = 321 correspondant à la date du 17 novembre (l'argument du sinus est en radians!):

$$\delta(\circ) = 23,45 \sin\left(2\pi \frac{284+J}{365}\right) = 23,45 \sin 2\pi \frac{284+321}{365} = -19,6^{\circ}$$

hauteur du soleil: on l'obtient par (A4.4):

 $\sin h = \cos \delta \cos AH \cos \lambda_T + \sin \delta \sin \lambda_T = \cos(-19,6) \cos 15 \cos(44,83) + \sin(-19,6) \sin(44,83) = 0,409$

soit: h = 24,13°

le flux de diffusion du ciel en inclinaison nulle est donné par (formule (A4.28):

$$\Phi''_{SC}(i=0) = \Phi_{ST}(i=0) - \Phi_{S,0} \sin h \quad (0.31)$$

Or $\phi_{ST}(i=0)$ et $\phi_{S,0}$ dépendent des conditions de trouble de l'atmosphère, qui affectent les effets de la hauteur du soleil sur l'horizon (le trouble agit d'autant plus sur le flux incident que le soleil est bas sur l'horizon). Or, pour un ciel pur sans trouble, le **tableau A4.1** de l'**Annexe 4** donne les formules:

$$\varphi_{ST}(i=0) = 1130 (\sin h)^{1,15} \quad (0,32)$$

$$\varphi_{S,0} = 1210 \exp\left(-\frac{1}{6\sin(h(^\circ)+1)}\right) \quad (0,33)$$

Avec la valeur trouvée pour h = 24,13°, (0.32) et (0.33) donnent: $\varphi_{ST}(i=0) = 404 \text{ W/m}^2$ et $\varphi_{S,0} = 817 \text{ W/m}^2$. Et (0.31) donne: $\varphi''_{SC}(i=0) = 404 - 817 \text{ sin } (24,13^\circ) = 70 \text{ W/m}^2$.

• De (0.30) on obtient $\cos\theta$:

 $\cos\theta = \cos 36 \times \sin (24,13) + \sin 36 \times (\cos(-19,6) \times \sin(44,83) \times \cos 15 - \sin(-19,6) \times \cos(44,83)) = 0.85$

• Finalement (0.29) donne le flux incident disponible:

$$\Phi_{ST} = 817 \times 0.85 + \frac{1 - \cos 36}{2} \times 0.3 \times 404 + \frac{1 + \cos 36}{2} \times 70 = 769 W/m^2$$

2 – Calcul de ka:

Se reporter au schéma du circuit équivalent à la **figure 8**. D'après la relation (11):

$$k_a = \frac{1}{R_a} = \frac{1}{R_{Pa}} + \frac{1}{R_{Pa'}}$$
 (0.34)

avec: $R_{Pa} = R_{PC} + R_{Ca}$ et $R_{Pa'} = R_{iP} + R_{a'iC}$ que nous calculons comme suit:

- D'après (0.17): $R_{PC} = \frac{1}{k_{PC}} = \frac{1}{h_{PCN} + h_{PCR}}$ (0.35)
 - Pour la convection naturelle dans la cavité séparant la vitre (couverture) et la plaque (absorbeur), on est dans la situation où (0.14) s'applique:

$$h_{PCN} = \frac{\lambda_F}{b} (0.06 + 3.10^{-4} (90^{\circ} - i)) \left(\frac{g}{T_m} \frac{T_P - T_C}{v^2} b^3\right)^{(1/3)}$$
(0.36)

où $T_m = (T_P + T_C)/2$ est la température moyenne dans la cavité.

> Pour le transfert par rayonnement entre la couverture et la plaque, (0.16) donne:

$$h_{PCR} \approx \frac{4\sigma T_m^3}{\frac{1}{\epsilon_P} + \frac{1}{\epsilon_C} - 1} \quad (0.37)$$

- D'après (0.4): $R_{Ca} = \frac{1}{k_{Ca}} = \frac{1}{h_{caC} + h_{caR}}$ (0.38)
 - Pour le transfert convectif entre l'air ambiant (a), animé du vent de vitesse v_a, et la couverture, (0.5) donne:

$$h_{caC} = 5,7+3,8v_a$$
 (0,39)

Pour le transfert par rayonnement du ciel vers la couverture, (0,6) s'applique, où la température équivalente de rayonnement du ciel T₀ est donnée par la formule de Schwirbank (0.7):

$$h_{caR} = \frac{\varepsilon_C \sigma (T_C^4 - T_0^4)}{T_C - T_a} \quad (0.40)$$
$$T_0 = 0,0552 T_a^{1.5} \quad (0,41)$$

- Transfert conductif dans l'isolant: d'après (0.20): $R_{iP} = \frac{1}{k_{iP}} = \frac{L}{\lambda_i} \quad (0,42)$
- Transfert convectif entre l'isolant et l'air ambiant arrière (a'), soumis au vent de vitesse v_a d'après

(0.21):
$$R_{a'iC} = \frac{1}{h_{a'iC}}$$
 (0.43)
avec, d'après (0.5) également: $h_{a'iC} = 5,7+3,8v_{a'}$ (0.44)

Avec les données connues, on peut calculer immédiatement $R_{Pa'} = R_{iP} + R_{a'iC}$ à l'aide des relations (0.42), (0.43), (0.44):

 h_{aic} = 5,7 (W/m²/K) puisque $v_{a'}$ = 0 (pas de vent à l'arrière) $\rightarrow R_{aic}$ = 1/5,7 = 0,175 (K/m²/W)

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 18/111

 $R_{iP} = 0,10/0,045 = 2,22 \text{ (K/m²/W)}$ donc: $R_{Pa'} = 0,175 + 2,22 = 2,40 \text{ (K/m²/W)}$

En revanche, le calcul de $R_{Pa} = R_{PC} + R_{Ca}$ n'est pas immédiat, puisqu'il nécessite de connaître la température de la vitre, T_c, la température de la plaque T_P, ainsi que la viscosité cinématique de l'air v qui varie avec la température moyenne de la cavité T_m = (T_c + T_P)/2 (voir **tableau 1** ci-après).

T (°C)	ρ _a (kg/m³)	c _P (J/kg/K)	∨ (10 ⁻⁶ m²/s)	λ _⊧ (10⁻³ W/m/K)	diffusivité α _F = λ _F /ρ _a c _P (10 ⁻⁶ m²/s)	nb. de Prandtl Pr = ρ _a vc _P /λ _F
0	1,292	1000	13,2	23,8	18,4	0,716
10	1,247	1001	14,1	24,4	19,6	0,717
20	1,204	1003	14,9	25,1	20,8	0,719
30	1,164	1004	15,9	25,8	22,0	0,720
40	1,127	1006	16,8	26,4	23,3	0,721
50	1,092	1007	17,8	27,1	24,6	0,722
60	1,060	1009	18,7	27,7	25,9	0,723
70	1,029	1010	19,7	28,3	27,3	0,724

tableau 1 – caractéristiques de l'air sec à différentes températures

On peut déjà établir une relation entre la température de plaque T_P et celle de la couverture (vitre) T_c . Pour cela, on utilise la relation (A1.20), de l'**Annexe 1**, qui exprime l'équilibre thermique, que l'on applique à la vitre:

 $\Phi_{C,a}^{+} + \Phi_{C,r}^{-} - \Phi_{C,i}^{-} = 0$ (0.45)

dans laquelle:

• φ_{C,a} : flux absorbé par la vitre

φ_{c,r}: flux réfléchi par la vitre

• $\phi_{C,i}$: flux incident sur la vitre (d'origine quelconque)

Or le flux incident sur la vitre est la somme des flux incidents issus de l'air ambiant $\phi_{Ca,i}$ et de la plaque de l'absorbeur $\phi_{PC,i}$:

$$\Phi_{C,i} = \Phi_{Ca,i} + \Phi_{PC,i}$$
 (0.46)

et le flux réfléchi par la vitre est la somme des flux réfléchis vers l'air extérieur $\phi_{Ca,r}$ et vers la plaque $\phi_{PC,r}$:

$$\Phi_{C,r} = \Phi_{Ca,r} + \Phi_{PC,i} \quad (0.47)$$

Par ailleurs, soit ϕ_{Ca} le flux échangé entre l'air externe et la vitre (attention aux notations: à ne pas confondre avec $\phi_{C,a}$ flux absorbé par la vitre !) et ϕ_{PC} le flux échangé entre la vitre et la plaque. Ces flux représentent le bilan entre le flux réfléchi et le flux incident, donc ils sont égaux à:

$$\Phi_{Ca} = \Phi_{Ca,r} - \Phi_{Ca,i}$$

$$\Phi_{PC} = \Phi_{PC,r} - \Phi_{PC,i}$$

d'où:

que l'on remplace dans (0.46) et (0.47), puis dans (0.45):

Si $\Phi_{C,a}=0$ (la vitre n'absorbe aucune puissance, elle les transmet toutes), alors:

$$\Phi_{Ca} + \Phi_{PC} = 0$$
 (0.49)

qui signifie: la somme des flux thermiques échangés par la vitre, avec d'une part l'air extérieur, et d'autre part avec la plaque, est nulle à l'équilibre thermique (¹). Les deux échanges s'équilibrent. Or, ces flux sont:

$$\varphi_{Ca} = k_{Ca} (T_C - T_a)$$

$$\varphi_{PC} = k_{PC} (T_C - T_P)$$

avec $k_{Ca} = 1/R_{Ca}$ et $k_{PC} = 1/R_{PC}$ donnés respectivement par (0.38) et (0.35). L'égalité (0.49) fournit alors:

$$T_{C} = \frac{k_{Ca}T_{a} + k_{PC}T_{P}}{k_{Ca} + k_{PC}} = \frac{R_{PC}T_{a} + R_{Ca}T_{P}}{R_{PC} + R_{Ca}}$$
(0.50)

(0.50) donne en fait une relation compliquée entre T_c et T_P , puisque R_{PC} dépend de T_P et T_c et R_{Ca} dépend de T_c , que l'on explicite ici à partir de (0.36), (0.37), (0.39), (0.40):

$$k_{PC} = \frac{1}{R_{PC}} = \frac{\lambda_F}{b} (0,06+3.10^{-4}(90-i)) \left(\frac{2g}{T_P + T_C} \frac{T_P - T_C}{v^2} b^3 \right)^{1/3} + \frac{1}{2} \frac{\sigma (T_P + T_C)^3}{\frac{1}{\epsilon_P} + \frac{1}{\epsilon_C} - 1}$$
(0.51)
$$k_{Ca} = \frac{1}{R_{Ca}} = 5,7+3,8 v_a + \frac{\epsilon_C \sigma (T_C^4 - T_0^4)}{T_C - T_a}$$
(0.52)

Il faut que l'une des deux températures, T_P ou T_C , soit connue pour déterminer l'autre en résolvant cette équation compliquée (0.50) compte tenu de (0.51) et (0.52). Si T_P est connue, comme c'est le cas dans l'énoncé, la recherche de T_C se fait par approximations successives. Pour cela, on considère que T_C est plus proche de T_a que de T_P , on fixe donc une première valeur T_{C1} proche de T_a , que l'on injecte dans (0.51), (0.52) et (0.50). On obtient alors une nouvelle valeur calculée T_{C2} par l'égalité (0.50). On regarde si cette nouvelle valeur est proche de celle initialement fixée T_{C1} . Si c'est le cas, la solution est T_{C1} ; dans le cas contraire, on recalcule (0.51) et (0.52) avec T_{C2} et, par (0.50), on obtient une nouvelle valeur T_{C3} . Et le cycle recommence (voir schéma du processus à la **figure 12**).

$$d(T_C - T_0)/(T_C - T_E) = -dt/\tau$$

Si k_c donc τ est indépendant de T_c (cas idéal) la solution de cette équation donne l'évolution de T_c avec le temps:

 $T_{\rm C}(t) = T_{\rm E} + (T_0 - T_{\rm E}) \exp(-t/\tau)$

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 20/111

¹ Remarque: ceci est cohérent avec la situation plus générale où un corps C quelconque reçoit divers flux thermiques dont la somme est $\varphi_C = \varphi_{Ca} + \varphi_{CP} + ...$ Ce flux total s'écrit $\varphi_C = k_C (T_C - T_E)$ où T_C est la température de C qui évolue au cours du transfert, k_C la conductance thermique totale, et T_E une température imposée par la source de ce transfert. Le bilan d'énergie traduit le fait que la variation de la quantité de chaleur est compensée par l'apport (algébrique) de chaleur due au flux: $\varphi_C S_C + m_C c d/dt (T_C - T_0) = 0$

où S_C surface d'échange du corps C, m_c sa masse, T₀ sa température initiale, c chaleur massique de C. Or m_c = ρ_c S_c h où ρ_c masse volumique du corps C, h son épaisseur. En posant $\tau = \rho_c$ c h /k_c, l'équation bilan précédente se réécrit:

Au bout d'un temps suffisamment grand, t $\rightarrow \infty$ (en pratique 2τ), la température de C se stabilise à T_E: T_{Céq.} = T_E. Dans cette situation d'équilibre dT_C/dt = 0 donc $\phi_C = \phi_{Ca} + \phi_{CP} + ... = 0$ ce qu'exprime (0.49). Si T_E > T₀, le corps C s'échauffe, et se refroidit dans le cas contraire.

Dans la situation plus réaliste où $k_c = f(T_c)$, la résolution de l'équation bilan est plus compliquée, mais le comportement asymptotique reste le même en général, de sorte qu'à l'équilibre on a encore (0.49).

figure 12 – méthode d'approximation pour calculer T_c puis k_a , connaissant T_P

La proximité des valeurs trouvées T_{Cn+1} et T_{Cn} , à une étape quelconque « n », est relative à la précision ε que l'on s'est fixée au départ: $|T_{Cn+1} - T_{Cn}|/T_{Cn} < \varepsilon$ (attention: les températures sont en Kelvin !). Prenons alors $T_{C1} = 15^{\circ}C = 288$ K qui plus proche de $T_a = 13^{\circ}C = 286$ K que de $T_P = 55^{\circ}C = 328$ K, et fixons une précision $\varepsilon = 0,01 = 1\%$.

On a $T_{m1} = (T_{C1} + T_P)/2 = (288+328)/2 = 308 \text{ K} = 35^{\circ}\text{C}$, donc d'après le **tableau 1**:

$$v \approx 16.10^{-6} m^2/s$$

 $\lambda_F \approx 26.10^{-3} W/m/K$

Avec les données de l'énoncé on calcule $k_{PC}(T_{C1})$ et $k_{Ca}(T_{C1})$ par les relations (0.51) et (0.52):

$$k_{PC} = 8,49 \text{ W/m}^2/\text{K}$$

 $k_{Ca} = 26,7 \text{ W/m}^2/\text{K}$

Puis (0.50) donne: $T_{C2} = (26,7 \times 286 + 8,49 \times 328)/(26,7 + 8,49) = 296 \text{ K} = 23^{\circ}\text{C}$

On a $(T_{C2} - T_{C1})/T_{C1} = (23 - 15)/288 = 0,027 = 2,7\%$ supérieure à la précision requise de 1%.

Il faut donc une nouvelle étape n = 2: avec T_{C2} = 296 K, on a T_{m2} = (296 + 328)/2 = 312 K = 39°C, d'où:

 $v \approx 16.8 \cdot 10^{-6} m^2/s$

 $\lambda_F \approx 26.4.10^{-3} W/m/K$

(0.51), (0.52) \rightarrow

 $k_{PC} = 8,41 \text{ W/m}^2/\text{K}$

 $k_{Ca} = 36,9 \text{ W/m}^2/\text{K}$

 $(0.50) \rightarrow T_{C3} = (36,9 \times 286 + 8,41 \times 328)/(36,9 + 8,41) = 294 \text{ K} = 21^{\circ}\text{C}$ On a $|T_{C3} - T_{C2}|/T_{C2} = |21 - 23|/296 = 0,007 = 0,7\%$ qui est inférieure au 1% requis. On peut donc adopter

comme température de la vitre $T_c = T_{C3} = 21^\circ C = 294$ K, et continuer le calcul de k_a avec les dernières valeurs obtenues de k_{PC} = 8,41 et k_{Ca} = 36,9. (0.34) donne:

$$k_{a} = \frac{1}{R_{Pa}} + \frac{1}{R_{Pa'}} = \frac{1}{R_{PC} + R_{Ca}} + \frac{1}{R_{Pa'}} = \frac{1}{\frac{1}{k_{PC}} + \frac{1}{k_{Ca}}} + \frac{1}{\frac{1}{k_{Pa'}}} = \frac{1}{\frac{1}{1/8,41 + 1/36,9}} + \frac{1}{1/2,40} = 7,27 W/m^{2}/K$$

Le calcul du rendement de conversion s'achève par (7), avec $\nu\,{}^*=\!0,\!76$, k_a = 7,27 W/m²/K et ϕ_{ST} = 653 W/m² :

$$\eta' = \nu * -k_a \frac{T_P - T_a}{\varphi_{ST}} = 0,76 - 7,27 \times \frac{55 - 13}{769} = 0,36 = 36\%$$

b) Exemple de calcul du rendement instantané relatif au fluide caloporteur:

Enoncé: - On utilise les mêmes données que celles de l'énoncé précédent (a) et les résultats obtenus: φ_{ST} , k_a . Mais cette fois on cherche à calculer le rendement exprimé par (15), la température de stagnation calculée par (18) et la température de sortie T_{sf} calculée par (A6.8) (cf. **Annexe 6**), à partir des données supplémentaires suivantes:

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 21/111

- plaque de l'absorbeur:

* cuivre: λ_P = 384 W/m/K

* dimensions de la plaque (**figure 13**): longueur L_y = 1,5 m; largeur L_0 = L_x = 0,75 m (les tuyaux sont distribués suivant cette largeur); épaisseur: L_P = 1 mm.

dispositif du fluide caloporteur (eau):

* chaleur massique (à la température estimée 40°C): c_P = 4174 J/kg/K

* conductivité thermique à 40°C: λ_F = 0,632 W/m/K

* masse volumique à 40°C: ρ_F = 992 kg/m3

* viscosité dynamique à 40°C: μ = 653.10⁻⁶ kg/m/s \rightarrow viscosité dynamique ν = μ/ρ_F = 6.58.10⁻⁷ m²/s

* température d'entrée T_{ef} = 40°C

* débit d'entrée $q_F = 50$ litres/h = 1,39.10⁻⁵ m³/s (il est supposé égal au débit de sortie car on néglige les pertes de charge)

* diamètre externe et interne des tuyaux: $D_e = 14 \text{ mm}$, $D_i = 12 \text{ mm}$

* pas des tuyaux: $p_0 = 37,5 \text{ mm} \rightarrow X = (p_0 - D_e)/2 = 11,75 \text{ mm}$

On suppose en outre que, dans la relation (15), on a $k_{a'} = k_a = 7,27 \text{ W/m}^2/\text{K}$.

Si, ensuite, on considère que le dispositif est fait avec un tuyau unique, de mêmes diamètres que précédemment, en forme de serpentins comme indiqué à la **figure 14**, avec le même pas que précédemment, et les mêmes conditions relatives à la circulation et la nature du fluide caloporteur, recalculer le rendement η ", et la température de sortie T_{sf}: que constate-t-on?

SOLUTION:

Le transfert thermique entre les tuyaux et l'eau s'effectue par convection forcée (la vitesse d'écoulement de l'eau étant imposée). Le coefficient de transfert h_{Rfc} correspondant dépend du régime d'écoulement (laminaire ou turbulent). Pour déterminer le régime, il faut donc d'abord calculer le nombre de Reynolds et le comparer à la valeur critique $Re_c = 2000$.

Dans la configuration de la figure 13, le débit massique dans chaque tuyau q, et donc la vitesse d'écoulement V, est différent du débit massique d'entrée p_Fq_F , car celui-ci se répartit de manière équitable entre les tuyaux disposés en parallèle. Il s'ensuit que le débit massique dans chaque tuyau est égal à p_Fq_F/n , où n est le nombre de tuyaux en parallèle. Or ce nombre est égal au rapport de la largeur L_0 au pas p_0 , ce qui donne:

$$n = \frac{L_0}{p_0} = \frac{0.75}{0.0375} = 20$$

d'où:

$$q = \rho_F \frac{q_F}{n} = 992 \times 1,39 \frac{.10^{-5}}{.20} = 6,9.10^{-4} kg/s$$

On en déduit la vitesse dans chaque tuyau, V, en considérant que l'eau traverse la section entière interne du tuyau S = $\pi D_i^2/4$:

$$q = \rho_F V S \rightarrow V = \frac{4q}{\rho_F \pi D_i^2} = \frac{4 \times 6.9 \cdot 10^{-4}}{992 \times \pi \times 0.012^2} = 0.00615 \, m/s$$

Le nombre de Reynolds pour chaque tuyau est alors:

$$Re = \frac{VD_i}{v} = \frac{0,00615 \times 0,012}{6,58.10^{-7}} = 112,16$$

qui est < 2000, donc le régime dans les tuyaux est laminaire. Il s'ensuit que le coefficient de transfert thermique par convection forcée entre le tuyau et l'eau s'obtient par la relation (A2.6a):

$$h_{Rfc} = 4,36 \frac{\lambda_F}{D_i} = \frac{4,36 \times 0,632}{0,012} = 229,6 W/m^2/K$$

Pour calculer F puis F_T , il nous faut aussi calculer:

débit massique par surface du capteur (relation (A6.9)):

$$q^* = \frac{q}{p_0 L_y} = \frac{6.9 \cdot 10^{-4}}{0.0375 \times 1.5} = 0.0123 \, kg/s/m^2$$

- calcul de ω (relation (A6.2bis)): $\omega = \sqrt{\frac{k_a'}{\lambda_p L_p}} = \sqrt{\frac{7,27}{384 \times 0,001}} = 4,35 \, m^{-1}$ - calcul de ψ (relation (A6.4bis)): $\psi = \frac{\tanh(\omega X)}{\omega X} = \frac{\tanh(4,35 \times 0,01175)}{4,35 \times 0,01175} = 0,9991$
- périmètre mouillé: $P = \pi D_i = \pi \times 0.012 = 3.77.10^{-2} m$

Le calcul de F (relation (A6.7) ou (17)) et F_T (relation 16) donne ensuite:

$$F = \frac{1}{\frac{p_0 k_a'}{P h_{Rfc}} + \frac{p_0}{D_e + 2 X \psi}} = \frac{1}{\frac{0,0375 \times 7,27}{0,0377 \times 229,6} + \frac{0,0375}{0,014 + 2 \times 0,01175 \times 0,9991}} = 0,969$$

$$F_T = \frac{q^* c_P}{k_a'} \left(1 - \exp\left(-\frac{F k_a'}{q^* c_P}\right) \right) = \frac{0,0123 \times 4174}{7,27} \left(1 - \exp\left(-\frac{0,969 \times 7,27}{0,0123 \times 4174}\right) \right) = 0,9055$$

$$P_T = \frac{p_0 k_a'}{k_a'} \left(1 - \exp\left(-\frac{F k_a'}{q^* c_P}\right) \right) = \frac{0,0123 \times 4174}{7,27} \left(1 - \exp\left(-\frac{0,969 \times 7,27}{0,0123 \times 4174}\right) \right) = 0,9055$$

$$P_T = \frac{p_0 k_a'}{k_a'} \left(1 - \exp\left(-\frac{F k_a'}{q^* c_P}\right) \right) = 0,9055 \left(0,76 - \frac{7,27 \times (40 - 13)}{0,0123 \times 4174} \right) = 0.46 = 46\%$$

Rendement: $\eta' = F_T \left(\nu * -k'_a \frac{T_{ef} - T_a}{\varphi_{ST}} \right) = 0,9055 \left(0,76 - \frac{7,27 \times (40 - 13)}{769} \right) = 0,46 = 46\%$

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 23/111

Le calcul de la température de sortie T_{sf} nécessite de connaître le flux solaire disponible sur la plaque:

$$\Phi_{SP} = v * \Phi_{ST} = 0,76 \times 769 = 584 W/m^2$$

Il vient donc (relation (A6.8)):

$$T_{sf} = \left(T_a + \frac{\Phi_{SP}}{k_a'}\right) + \left(T_{ef} - \left(T_a + \frac{\Phi_{SP}}{k_a'}\right)\right) \exp\left(-\frac{Fk_a'}{q^*c_P}\right)$$

= (13+273+584/7,27)+(40+273-(13+273+584/7,27)) exp(-0,969×7,27/(0,0123×4174))
= 320 K = 47°C

Température de stagnation (relation (18)):

$$T_{efmax} = T_a + \frac{\nabla^* \Phi_{ST}}{k_a'} = T_a + \frac{\Phi_{SP}}{k_a'} = 13 + 273 + 584/7, 27 = 366 K = 93 \circ C$$

On considère maintenant la configuration avec les serpentins de la **figure 14**: les tronçons de tuyau sont en série donc parcourus par le même débit q_F , qui est celui de l'entrée et de la sortie. Il s'ensuit que la vitesse dans chaque tronçon est la même et est donnée par:

$$q_{F} = \pi \frac{D_{i}^{2}}{4} V \rightarrow V = \frac{4q_{F}}{\pi D_{i}^{2}} = \frac{4 \times 1.39.10^{-5}}{\pi \times 0.012^{2}} = 0.123 \, m/s$$

c'est 20 fois celle dans chaque tuyau en configuration montage parallèle ! Le nombre de Reynolds est donc 20 fois celui de cette configuration: Re = $20 \times 112, 16 = 2252$, on est donc pratiquement en régime turbulent.

Il en résulte que le coefficient de transfert h_{Rfc} s'obtient cette fois par la formule (A2.6):

$$h_{Rfc} = \frac{\lambda_F}{D_i} \times 0,023 R e^{0.8} P r^{0.4}$$

Le nombre de Prandtl étant: $Pr = \frac{\mu c_P}{\lambda_F} = \frac{653.10^{-6} \times 4174}{0.632} = 4.31$, il vient:

$$h_{Rfc} = \frac{0.632}{0.012} \times 0.023 \times 2252^{0.8} \times 4.31^{0.4} = 1045 W/m^2/K$$

il est 4,5 fois supérieur à celui de la configuration parallèle: la turbulence améliore le transfert thermique et tend à homogénéiser plus efficacement les températures.

Le débit massique est identique dans chaque tronçon du serpentin:

$$q = \rho_F q_F = 992 \times 1,39.10^{-5} = 0,0138 \, kg \, /s$$

d'où
$$q^* = \frac{q}{L_0 L_y} = \frac{0.0138}{0.75 \times 1.5} = 0.0123 \, kg/s/m^2$$

Calcul du nouveau F:

$$F = \frac{1}{\frac{p_0 k_a'}{P h_{Rfc}} + \frac{p_0}{D_e + 2 X \psi}} = \frac{1}{\frac{0,0375 \times 7,27}{0,0377 \times 1045} + \frac{0,0375}{0,014 + 2 \times 0,01175 \times 0,9991}} = 0,993$$

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 24/111

$$F_{T} = \frac{q * c_{P}}{k_{a}'} \left(1 - \exp\left(-\frac{F k_{a}'}{q * c_{P}}\right) \right) = \frac{0.0123 \times 4174}{7.27} \left(1 - \exp\left(-\frac{0.993 \times 7.27}{0.0123 \times 4174}\right) \right) = 0.926$$

Rendement:

d'intérêt.

$$\eta'' = F_T \left(\nu^* - k'_a \frac{T_{ef} - T_a}{\Phi_{ST}} \right) = 0.926 \times \left(0.76 - \frac{7.27 \times (40 - 13)}{769} \right) = 0.47 = 47\%$$

Température de sortie (relation (A6.8)):

$$T_{sf} = \left(T_a + \frac{\Phi_{SP}}{k_a'}\right) + \left(T_{ef} - \left(T_a + \frac{\Phi_{SP}}{k_a'}\right)\right) \exp\left(-\frac{Fk_a'}{q*c_P}\right)$$

=(13+273+584/7,27)+(40+273-(13+273+584/7,27))exp(-0,993×7,27/(0,0123×4174))
=320 K = 47°C

Avec le serpentin, le rendement est à peine meilleur (l'apport supplémentaire de chaleur au fluide caloporteur s'effectue à peine mieux), et la température de sortie est la même que celle de la configuration parallèle, puisque le débit massique par unité de surface q* est le même qu'en configuration parallèle.

En configuration parallèle comme en configuration série (serpentin), la température de stagnation T_{efmax} est indépendante du débit. Mais l'écart entre les températures d'entrée et de sortie diminue lorsque le débit d'entrée q_F, donc q^{*}, augmente. En effet, en regardant (A6.8), que l'on réécrit sous la forme:

$$T_{sf} - T_{ef} = \left(T_{efmax} - T_{ef}\right) \left(1 - \exp\left(-\frac{Fk_a'}{q*c_P}\right)\right)$$

on s'aperçoit que (T_{sf} – T_{ef}) tend vers zéro, quelle que soit la température d'entrée T_{ef}, lorsque q*, donc le débit, augmente: la température de sortie restera donc pratiquement aussi froide que celle d'entrée. De ce point de vue le serpentin n'offre guère d'intérêt supplémentaire par rapport à la configuration parallèle. Il y a même un inconvénient à utiliser le serpentin: il est lié à la nécessité de prévoir des courbures de virages entre les tronçons suffisamment faibles, à cause de la raideur du matériau des tuyaux, ce qui entraîne, à dimensions de plaque égales, un pas plus important et donc une couverture moindre des tuyaux sur la plaque: ceci a donc pour effet de diminuer l'échange thermique. Enfin, un débit d'entrée important, que l'on retrouve dans chaque tronçon série du serpentin, nécessite une épaisseur de tuyau plus grande, pour des raisons de tenues mécaniques, donc un élargissement plus important des zones courbées, donc un pas encore plus grand, ainsi qu'une augmentation du poids de la plaque équipée des tuyaux. La solution montage des tuyaux en série (serpentin) offre alors peu

1.3 – Sur quels facteurs agir pour obtenir un rendement optimal?

Rappelons d'abord que le rendement du capteur, tel qu'il a été considéré précédemment, traduit la performance avec laquelle le capteur crée de la chaleur supplémentaire dans le fluide par rapport à la chaleur initiale du fluide d'entrée. Ce n'est en rien une mesure de performance à obtenir une température finale du fluide depuis une température initiale avant mise en circulation.

Plus la température d'entrée est grande, plus faible est la production de chaleur supplémentaire, et donc plus faible est l'écart entre la température de sortie et la température d'entrée: à la limite où cet écart est nul, on atteint, pour la température d'entrée, la température de stagnation. Le rendement de conversion devient donc nul. Ceci ne veut pas dire cependant que le capteur cesse de jouer son rôle. Cela signifie seulement que, à partir de la stagnation, le capteur maintient le fluide à la température de sortie, qui est égale à celle d'entrée, ou si l'on préfère, maintient la chaleur du fluide en circulation, et donc que cette chaleur n'augmentera plus.

Plus rapidement sera atteinte la température de stagnation, plus rapidement sera obtenue la température d'utilisation, laquelle est déterminée par la température de stagnation. En circuit fermé, cela

se traduit par une convergence plus rapide de la température de sortie vers la température d'entrée qui, quant à elle, augmente progressivement au cours du cycle puisque, étant en circuit fermé, la chaleur qu'elle cède dans l'environnement à chauffer, ne suffit pas à la ramener à sa température initiale avant mise en circulation.

L'intérêt étant d'obtenir une température d'ECS suffisamment élevée, il revient alors au même de chercher une température de stagnation suffisamment élevée. Or (18) montre que cela s'obtient si:

- la température de l'air extérieur T_a est grande; mais cela offre peu d'intérêt pratique pour le chauffage des locaux puisque dans ce cas le besoin de chauffer diminue, toutefois pour obtenir de l'eau chaude au robinet le critère reste déterminant.
- les conditions d'éclairement thermique du capteur doivent être bonnes: rendement optique v* élevé et flux solaire disponible φ_{ST} sur la vitre élevé. Or d'après (4), un grand rendement optique nécessite d'une part une grande émissivité de la plaque dans le visible ε*_P, et d'autre part une bonne transmission par la vitre τ_C; d'après les données du **tableau (A1.3)**, une grande émissivité est obtenue avec un revêtement noir de la plaque.
- la conductance globale k_{a'} est petite; cette condition équivaut à minimiser les pertes thermiques du capteur, et donc à améliorer son isolation, ainsi qu'une plaque de grande conductivité thermique.

Il se trouve que ces trois conditions vont dans le sens d'une augmentation du rendement de conversion instantané $\eta^{"}$, comme le montre (15). Son augmentation est également obtenue si la température d'entrée est petite (T_{ef} proche de T_a) et/ou si F_T est grand (très proche de 1); or F_T croît quand le débit augmente, comme le montre (16). En effet, tous autres paramètres fixés, on considère comment évolue F_T avec le débit q*. L'analyse de la fonction $F_T = f(q^*)$ montre, à partir de (16), que cette fonction est monotone croissante et prend comme valeur asymptotique F lorsque le débit augmente (**figure 15**), on a d'ailleurs toujours $F_T < F$. Mais F_T est grand aussi quand le rendement d'irrigation F est grand (relation (16)); or, d'après (17), F est grand, c'est-à-dire quand la surface d'échange entre la plaque et l'eau est suffisante, si:

- le pas p₀ des tuyaux est petit (donc la couverture d'échange est grande)
- h_{Rfc} est grand (transfert thermique par convection forcée entre tuyaux et eau important, ce qui s'obtient avec: un débit important, un petit diamètre interne des tuyaux)

On a vu aussi que la production de chaleur dans le fluide caloporteur a lieu tant que la température de sortie T_{sf} est plus grande que celle d'entrée T_{ef} (laquelle est donc encore loin de la température de

stagnation T_{efmax}). D'après (A6.8), cela se produit lorsque

 $\frac{F\,k_{a}\,'}{q\,^{*}c_{P}}\!\!\gg\!1$, donc lorsque: q* faible (débit

faible) à conductance globale fixée.

figure 15 – allure de l'évolution du facteur de transfert en fonction du débit massique par unité de surface de l'absorbeur q*

Il n'y a pas de maximum de F_T .

Donc si on augmente seulement q* on diminue $(T_{sf} - T_{ef})$, sans pour s'approcher autant de la température de stagnation: l'eau en sortie est presque aussi « froide » que l'eau en entrée, ce qui n'est pas le but recherché. En effet, on peut considérer qu'un débit trop élevé laisse trop peu de temps au fluide caloporteur pour recevoir la chaleur émise par la plaque. Néanmoins, le débit ne doit pas non plus être trop faible: le F_T et donc le rendement trop faibles. seraient et la production de chaleur initiale au début du cycle n'aurait guère lieu. Il а donc un compromis y à rechercher sur le débit.

2 – EXPÉRIMENTATION

2.1 – But de l'expérimentation

Nous avons cherché à comparer les valeurs du rendement instantané de conversion η " obtenues à partir des mesures de T_{sf} et T_{ef} à celles obtenues par le calcul de (15). Cette comparaison est effectuée avec deux isolants différents (polystyrène expansé et laine de verre), ainsi que pour différentes inclinaisons pour un isolant fixé (i = 0°, 30°, 45°). L'ensemble des mesures et calculs a été réalisé pour une même date (à 2 jours près) et un horaire de la journée identique, ceci afin de conserver les mêmes conditions de flux solaires: les dates choisies où les données astronomiques évoluent peu d'un jour à l'autre sont déroulées les 29,30, 31 mai et 1er juin.

La maquette du capteur solaire, ainsi que le débit du fluide caloporteur (eau), sont inchangés, à l'exception des isolants. Le dispositif adopté est celui du serpentin (circuit série). La température extérieure T_a est toujours la même à chaque mesure.

Bien sûr, pour tracer la droite de rendement et situer les points de mesure par rapport à elle, la température d'entrée de l'eau T_{ef} a été modifiée.

Utiliser deux isolants arrière permet d'observer l'influence directe sur la conductance thermique k'a.

Choisir différentes inclinaisons du capteur par rapport à l'horizontale (angle i), permet de voir comment elle contribue d'une part à la valeur de ϕ_{ST} et d'autre part à celle de h_{Rfc}.

Le dispositif est en circuit fermé: l'eau d'entrée est pompée dans un réservoir dans lequel aboutit l'eau de sortie: en avançant dans le cycle, on s'attend donc à une augmentation de T_{ef}.

Méthode suivie (figure 16):

(Tef-Ta)/φsτ

figure 16 - droites de rendement calculée et « mesurée »

1 – Le rendement est « calculé » à partir des mesures de T_{sf} et T_{ef}, par la relation (14):

$$\eta''_{\text{mesuré}} = \frac{q * c_P}{\varphi_{ST}} (T_{sf} - T_{ef})$$

On l'appelle improprement « mesuré », bien qu'il nécessite un calcul, par comparaison avec le rendement calculé par (15), le calcul de celui-ci étant moins direct depuis les quantités mesurées puisqu'il nécessite la modélisation de toutes les conductances et résistances thermiques intermédiaires. Les quantités q* et ϕ_{ST} sont préalablement déterminées.

2 – Le rendement est calculé au moyen de (15) à partir des mesures de T_{ef} , T_{P} , T_{C} :

$$\eta'' = F_T \left(\nu * -k_a' \frac{T_{ef} - T_a}{\varphi_{ST}} \right)$$

où F_T et k_a' sont calculés.

3 – Les points de coordonnées (y = $\eta''_{mesuré}$, x = ($T_{ef} - T_a$)/ ϕ_{ST}) sont placés dans le même diagramme que celui de la droite de rendement obtenue par y = η'' = a + bx où a = ν^*F_T et b = - F_T k_a'.

4 - La droite de régression y = a' + b'x pour les points « mesurés » fournit la pente « mesurée » b' ainsi que l'ordonnée en x=0, a', que l'on compare respectivement à b et a.

5 – Les autres résultats « mesurés » et calculés font aussi l'objet de comparaison:

- la température de stagnation T_{efmax};
- l'écart entre la température de sortie et celle d'entrée (T_{sf} T_{ef})

On s'attend, bien sûr, à ce que T_{efmax} soit d'autant plus grande que (-b) ou (-b') soit petite.

Pour assurer, à l'intérieur de chaque série de mesures et de calculs, des conditions les plus fixes possibles, il faut identifier celles qui sont:

- indépendantes de l'inclinaison, des conditions astronomiques et des températures;
- dépendantes uniquement des conditions astronomiques;
- dépendantes de l'inclinaison et des conditions astronomiques mais pas des températures;
- dépendantes de l'isolant;
- dépendantes des températures.

Tous les calculs afférents à ces familles de dépendances ont été effectués à l'aide d'un petit programme Basic qui ne pose aucune difficulté. Pour chacune d'elles, nous avons les calculs successifs suivants (se reporter aux chapitres et aux annexes pour les notations et les définitions):

- Conditions indépendantes de l'inclinaison, des conditions astronomiques et des températures:
 - Données relatives à la vitre: épaisseur $L_c,$ indice de réfraction $n_c,$ coefficient d'extinction $k_E,$ émissivité ϵ_c
 - Données et calculs relatifs à la plaque et aux tuyaux: épaisseur L_P, largeur plaque L₀, longueur plaque L_y, émissivité dans le visible ε*_P, émissivité dans l'infrarouge ε_P, conductivité thermique λ_P, diamètre extérieur des tuyaux D_e, diamètre intérieur des tuyaux D_i, distance inter-tuyaux X

pas des tuyaux: $p_0 = D_e + 2X$; périmètre mouillé: $P = \pi D_i$

- Données et calculs relatifs à la cavité: conductivité thermique de l'air λ_a, viscosité dynamique de l'air μ_a, masse volumique de l'air ρ_a, viscosité cinématique de l'air ν_a = μ_a/ρ_a, épaisseur b (les propriétés de l'air dépendent de la température, elles sont choisies à une température moyenne estimée dans la cavité, comprise entre T_P et T_C, mais fixe).
- Données et calculs relatifs à l'eau (fluide caloporteur): conductivité thermique de l'eau λ_F, chaleur massique c_P, masse volumique p_F, nombre de Prandtl Pr, viscosité dynamique μ, viscosité cinématique v_F = μ/ρ_F (les propriétés de l'eau dépendent de la température, elles sont choisies à une température moyenne estimée dans le tuyau, comprise entre T_P et T_{ef}, mais fixe).
- Données et calculs relatifs à l'avant du capteur (air ambiant extérieur): température de l'air ambiant à l'avant T_a,

Température de rayonnement du ciel (éq. (0.41)): $T_0 = 0,0552 T_a^{1,5}(K)$

vitesse du vent à l'avant: v_a , albédo du sol α_G

• Données et calculs relatifs à l'arrière du capteur: vitesse du vent à l'arrière v'a, résistance thermique liée à la convection entre l'isolant et l'air arrière (éq. (0.44)):

$$R_{a'iC} = \frac{1}{5,7+3,8v_{a'}}$$

• Données et calculs relatifs au débit: débit volumique q_F,

Débit massique par unité de surface de l'absorbeur $q^* =$

$$V = \frac{4 q_F}{\pi D_{z}^2}$$

Vitesse d'écoulement dans le tuyau (montage serpentin): V

Nombre de Reynolds: $Re = \frac{VD_i}{v_F}$

Coefficient de transfert entre la plaque et le fluide, h_{RfC} . Selon les valeurs de Re il s'exprime différemment:

Si Re < 2000 (écoulement laminaire): (A2.6a)
$$\rightarrow h_{RfC} = 4,36 \frac{\Lambda_F}{D_i}$$

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 28/111

Si Re > 2000 (turbulence): (A2.6) $\rightarrow h_{RfC} = \frac{\lambda_F}{D_i} \times 0,023 R e^{0.8} Pr^{0.4}$

- Conditions dépendantes uniquement des conditions astronomiques:
 - Données relatives au lieu, jour et heure d'observation: latitude λ_T, numéro du jour dans l'année J, angle horaire AH;
 - Déclinaison du soleil correspondant à la date: on utilise par exemple la formule de Fletcher

(A4.9): $\delta(^{\circ}) = 23,45 \sin\left(2\pi \frac{284+J}{365}\right)$ (attention! ici l'argument du sinus est en radians)

- Calcul de la hauteur h du soleil et de sin(h): (A4.4) $\rightarrow \sin h = \cos \delta \cos AH \cos \lambda_T + \sin \delta \sin \lambda_T$
- Calcul de la constante solaire au sol φ_{S,0}, des flux solaires sans inclinaison φ_{ST}(i=0), et diffusé du ciel sans inclinaison φ"_{SC}(i=0): ils dépendent des conditions de trouble et de la hauteur du soleil (exprimée en degrés) (tableau A4.1):

condition de trouble	φ _{S,0} (W/m²)	φ _{ST} (i=0) (W/m²)	
ciel très pur	$1210\exp\left(-\frac{1}{6\sin\left(h+1\right)}\right)$	$1130(\sin h)^{1,15}$	
ciel moyennement troublé	$1230\exp\left(-\frac{1}{3,8\sin(h+1,6)}\right)$	$1080(\sin h)^{1,22}$	
ciel trouble	$1260 \exp\left(-\frac{1}{2,3\sin\left(h+3\right)}\right)$	$995(\sin h)^{1,25}$	

$$(0.31) \rightarrow \Phi_{SC}''(i=0) = \Phi_{ST}(i=0) - \Phi_{S,0} \sin h$$

- conditions dépendantes de l'inclinaison: transmission optique de la vitre et flux reçu sur la vitre et sur la plaque:
 - Donnée de l'angle d'inclinaison du capteur par rapport à l'horizontale: i (°)
 - Calcul de l'angle d'incidence sur la vitre θ_1 : il dépend de i et de h selon si i < 90 h : $\theta_1 = \pi/2 (h + i)$

si i > 90 - h :
$$\theta_1 = (h + i) - \pi/2$$

- Calcul de l'angle de réfraction dans la vitre: θ_2 = arc sin (sin θ_1 / n_c)
- Calcul du coefficient de réflexion (formule de Fresnel (A1.32):

$$\rho = \frac{1}{2} \left(\left(\frac{\sin(\theta_2 - \theta_1)}{\sin(\theta_2 + \theta_1)} \right)^2 + \left(\frac{\tan(\theta_2 - \theta_1)}{\tan(\theta_2 + \theta_1)} \right)^2 \right)$$

- Calcul du rapport de transmission: (A1.31) $\rightarrow \tau_{rC} = \frac{1-\rho}{1+\rho}$
- Calcul du chemin optique dans la vitre r, et du rapport d'atténuation dans la vitre τ_{aC} :

$$r = \frac{L_C}{\cos \theta_2}$$
 et (A1.35) $\rightarrow \tau_{aC} = \exp(-k_e r)$

- Calcul du coefficient de transmission total: (A1.30) $\rightarrow \tau_C = \tau_{rC} \times \tau_{aC}$
- Calcul du rendement optique et du flux incident sur la plaque: (4) $\rightarrow v^* = \tau_C \varepsilon_P^*$ et $\phi_{SP} = v^* \phi_{ST}$
- Calcul de cos θ : (30) $\rightarrow \cos\theta = \cos i \sin h + \sin i (\cos \delta \sin \lambda_T \cos AH - \sin \delta \cos \lambda_T)$
- Calcul du flux incident sur la vitre:

$$(0.29) \rightarrow \quad \varphi_{ST} = \varphi_{S,0} \cos \theta + \frac{1 - \cos i}{2} \alpha_G \varphi_{ST}(i=0) + \frac{1 + \cos i}{2} \varphi_{SC}''(i=0)$$

où α_G est l'albédo du sol.

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 29/111

- Calcul du flux incident sur la plaque: $\Phi_{SP} = v^* \Phi_{ST}$
- Conditions relatives à l'isolant:
 - Données de la conductivité thermique λ_i et de l'épaisseur L_i de l'isolant;
 - Calcul de la résistance thermique relative à la transmission par conduction thermique dans

l'isolant: (0.20) $\rightarrow R_{iP} = \frac{L_i}{\lambda_i}$

conditions dépendantes des températures:

- Données issues des mesures de la température de plaque $T_{\text{P}},$ de vitre $T_{\text{C}},$ d'entrée d'eau $T_{\text{ef}},$ de sortie d'eau T_{sf}
- Calcul de la conductance k_{Ca} du transfert thermique entre l'air externe et la vitre:

(0.52)
$$\rightarrow k_{Ca} = 5,7+3,8 v_a + \frac{\varepsilon_C \sigma (T_C^4 - T_0^4)}{T_C - T_a}$$

• Calcul du coefficient de transfert entre la vitre et la plaque par rayonnement thermique:

$$(0.37) \rightarrow h_{PCR} = \frac{1}{2} \frac{\sigma (T_P + T_C)^3}{\frac{1}{\epsilon_P} + \frac{1}{\epsilon_C} - 1} \quad (\sigma = 5,67.10^{-8} \text{ constante de Stefan})$$

 Calcul du coefficient de transfert dans la cavité entre la plaque et la vitre par convection naturelle: h_{PCN}. Son expression dépend du nombre de Grashof Gr et fait intervenir l'inclinaison dans certains cas:

$$\begin{array}{ll} (0.12) \rightarrow & Gr = \frac{2 \, g \, b^3}{\nu_a^2} \frac{T_P - T_C}{T_P + T_C} \\ \text{si } \text{Gr} < 1700 + 47,8 \, \text{i} : & h_{PCN} = 1,013 \, \frac{\lambda_a}{b} \\ \text{si } 1700 + 47,8 \, \text{i} < \text{Gr} < 80000 : (0.36) \rightarrow & h_{PCN} = \frac{\lambda_a}{b} (0,06 + 3.10^{-4} (90 - i)) \, Gr^{(1/3)} \\ \text{si } \text{Gr} > 80000 : (0.13) \rightarrow & h_{PCN} = \frac{\lambda_a}{b} (2,5 + 0,0133 (90 - i)) \end{array}$$

- Calcul de la conductance thermique totale entre la plaque et la vitre: (0.35) $\rightarrow k_{PC} = h_{PCN} + h_{PCR}$
- Calcul de la conductance totale de perte thermique avec l'air ambiant:

$$(0.34) \to k_{a}' \approx k_{a} = \frac{1}{\frac{1}{k_{PC}} + \frac{1}{k_{Ca}}} + \frac{1}{\frac{1}{k_{PC}} + \frac{1}{k_{Ca}}}$$

• Calcul du rendement d'irrigation F et de F_T:

$$(A6.2 \text{ bis}) \rightarrow \omega = \sqrt{\frac{k_a'}{\lambda_p L_p}} ; (A6.4 \text{ bis}) \rightarrow \psi = \frac{\tanh(\omega X)}{\omega X}$$

$$(A6.7) \text{ ou} (17) \rightarrow F_{T} = \frac{1}{p_0 \left(\frac{k_a'}{P h_{RfC}} + \frac{1}{D_e + 2X\psi}\right)}$$

$$(16) \rightarrow F_{T} = \frac{q^* c_P}{k_a'} \left(1 - \exp\left(-\frac{F k_a'}{q^* c_P}\right)\right)$$

 Calcul de la température de stagnation T_{efmax}, de l'écart entre les températures de sortie et d'entrée (T_{sf} - T_{ef}) théorique et issu des mesures, calcul des rendements calculé et « mesuré »:

$$(18) \rightarrow T_{efmax} = T_a + \frac{\Phi_{SP}}{k_a'}$$

$$(A6.8) \rightarrow (T_{sf} - T_{ef})_{\text{théorique}} = (T_{efmax} - T_{ef}) \left(1 - \exp\left(-\frac{F k_a'}{q * c_P}\right) \right)$$

$$Calcul de l'écart mesuré: (T_{sf} - T_{ef})_{\text{mesuré}} = T_{sf(mesurée)} - T_{ef(mesurée)}$$

$$Calcul du rendement théorique: (15) \rightarrow \eta'' = F_T \left(\nu * -k_a' \frac{T_{ef} - T_a}{\Phi_{ST}} \right)$$

$$Calcul du rendement « mesuré »: (14) \rightarrow \eta''_{mesuré} = \frac{q * c_P}{\Phi_{ST}} (T_{sf} - T_{ef})$$

2.2 – Maquette

Les caractéristiques de la maquette qui a été réalisée pour les mesures et calculs listés au **point 2.1** sont rassemblées dans le **tableau 2** et quelques photos sont montrées à la **figure 17**.

Capteur: boîte rectangulaire fermée sur les 4 côtés par des parois en bois, fermée par une vitre simple vitrage à la face avant, équipée d'une plaque d'absorbeur en aluminium, revêtue d'une peinture noire sur le dessus, à laquelle est fixé un tuyau de cuivre en serpentin (6 branches); l'isolant placé audessous de la plaque, est soit en polystyrène expansé, soit en laine de verre; les tuyaux y sont encastrés. L'espace situé entre la plaque et la vitre contient de l'air complètement isolé de l'extérieur. L'ensemble repose sur quatre pieds et n'est pas au contact du sol. Le changement d'inclinaison est assuré par des cales. L'azimut local du capteur par rapport au soleil est nul: il est dans le même plan méridien que le soleil.

Circuit: la circulation est en circuit fermé. Une pompe délivre un débit constant.

Capteurs: sondes de température à l'entrée et à la sortie du serpentin, ainsi que collée à la face interne de la vitre et à la plaque de l'absorbeur. Un thermomètre et un anémomètre mesurent la température ambiante et la vitesse du vent éventuel.

Vitre: $L_c = 4 \text{ mm} - n_c = 1,5 - \varepsilon_c = 0,83 - k_e = 20 \text{ m}^{-1}$

Plaque de l'absorbeur: $L_P = 2,3 \text{ mm} - L_0 = 63 \text{ cm} - L_y = 90 \text{ cm} - \epsilon^*_P = 0,97 - \epsilon_P = 0,88$ Tuyau en serpentin: $D_e = 12 \text{ mm} - D_i = 11 \text{ mm} - 2X = 8,8 \text{ cm} - p_0 = 10 \text{ cm}$

Cavité: b = 6,4 cm – caractéristiques de l'air prises à la température moyenne estimée dans la cavité 40°C:

 $\lambda_a = 26, 4.10^{-3} \text{ W/m/K} - \mu_a = 18, 9.10^{-6} \text{ Pa.s} - \rho_a = 1,127 \text{ kg/m}^3$

Eau: caractéristiques de l'eau prises à la température moyenne estimée 45°C: $\lambda_F = 0,639 \text{ W/m/K} - c_P = 4175 \text{ J/kg/K} - \rho_F = 990 \text{ kg/m}^3 - \mu = 657.10^{-6} \text{ Pa.s} - \text{Pr} = 4,31$

Air extérieur avant: $T_a = 25^{\circ}C - v_a = 0 \text{ m/s}$ Air extérieur arrière: $v_a' = 0 \text{ m/s}$ Albédo du sol: $\alpha_G = 0.3$

Débit: $q_F = 150 \text{ L/h} = 4,16.10^{-5} \text{ m}^3/\text{s}$

Conditions astronomiques: $\lambda_T = 43,1^\circ - J = 150 (31 \text{ juin}) - AH = 0^\circ - \text{ condition de trouble: élevé}$

Isolants: deux isolants sont successivement employés:

- polystyrène expansé: $L_i = 4 \text{ cm} - \lambda_i = 0,0039 \text{ W/m/K}$

- laine de verre: $L_i = 4cm - \lambda_i = 0,04 \text{ W/m/K}$

Tableau 2 – caractéristiques de la maquette du capteur solaire et des conditions ambiantes

Hormis l'isolant, toutes les données du **tableau 2** sont maintenues constantes au cours de l'expérimentation.

Les grandeurs variables seront: les caractéristiques de l'isolant, l'inclinaison; autant que possible, les

mesures seront effectuées avec des températures de vitre et de plaque inchangées (ceci afin de ne pas bouleverser les parties de la conductance globale k_a' qui en dépendent).

figure 17 – fabrication de la maquette du capteur solaire

2.3 – Réalisation des mesures et résultats

2.3.1 – Calculs des paramètres qui dépendent uniquement des conditions astronomiques

Les résultats, rassemblés au **tableau 3**, sont inchangés quels que soient l'inclinaison, l'isolant, les températures. Ils servent de données d'entrée au calcul des paramètres qui dépendent de l'inclinaison.

δ(°)	sin h	h(°)	φ _{S,0} (W/m²)	φ _{ST} (i=0) (W/m²)	$\phi_{\text{SC}}\text{"(i=0)} \text{ (W/m^2)}$
21,75	0,9314	68,65	796,95	910,40	168,13

tableau 3 – données calculées relatives aux conditions astronomiques

2.3.2 – Calculs des paramètres qui dépendent uniquement de l'inclinaison

Les résultats du calcul des flux ϕ_{ST} et ϕ_{SP} , qui interviennent dans le rendement, la température de stagnation et l'écart des températures de sortie et d'entrée, changent uniquement avec l'inclinaison. Ils sont présentés, ainsi que les grandeurs intermédiaires, au **tableau 4**. Ils sont valables, quelles que soient les températures T_c et T_P, le débit, l'isolant.

i(°)	0	30	45
cos θ	0,9314	0,9886	0,9160
φ _{ST} (W/m²)	910,40	963,05	913,52
θ ₁ (°)	21,35	8,65	23,65
θ ₂ (°)	14,05	5,76	15,51
ρ	0,040	0,040	0,041
τ_{rC}	0,922	0,923	0,922
r (m)	0,004	0,004	0,004
τ _{aC}	0,921	0,923	0,920
τ _c	0,849	0,852	0,849
ν*	0,824	0,826	0,823
φ _{SP} (W/m²)	750,10	795,67	751,97

tableau 4 – données calculées relatives à l'inclinaison du capteur

Remarque: - On s'aperçoit que le flux solaire incident φ_{ST} passe par un maximum pour un angle compris entre 0 et 30°. Plus précisément, cet angle est égal à l'inclinaison pour laquelle le rayon solaire arrive perpendiculairement à la vitre, puisque cette situation correspond à un flux maximum: il est égal à i_{max} =

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 33/111

90 – h = 90 – 68,65 = 21,35°. Pour cette valeur, les grandeurs qui interviennent directement dans le rendement deviennent: $\varphi_{\text{STmax}} = 968,69 \text{ W/m}^2$, $v^*_{\text{max}} = 0,827$, $\varphi_{\text{SPmax}} = 800,66 \text{ W/m}^2$.

Lors de l'étude de l'influence de i sur le rendement, présentée au **point 2.3.5**, on s'attend donc à ce que η " passe par un maximum en i_{max} .

2.3.3 – Comparaison du rendement théorique et du rendement « mesuré » à inclinaison nulle, avec comme isolant le polystyrène expansé

Les températures de la plaque et de la vitre ont été mesurées et sont fixes durant les différentes mesures de T_{sf} et T_{ef}: T_P = 73°C, T_C = 51°C.

A partir de cela, les calculs ont fourni les résultats suivants (tableau 5):

$T_{P} = 73^{\circ}C - T_{C} = 51^{\circ}C$							
FT hPCR W/m²/K kCa W/m²/K Gr hPCN W/m²/K kPC W/m²/K ka' W/m²/K							
0,9815	6,358	13,88	6.10 ⁵	1,525	7,88	5,123	

tableau 5 – facteur de transfert thermique et conductance thermique globale pour le capteur horizontal, avec polystyrène expansé comme isolant arrière

En mesurant à plusieurs reprises au cours du cycle de l'eau les températures d'entrée T_{ef} et de sortie T_{sf} , et en utilisant les valeurs de ϕ_{ST} , F_T , ν^* , k_a' pour le calcul du rendement théorique η'' , et q^* pour le calcul direct du rendement « mesuré » $\eta''_{mesuré}$, on obtient la droite de rendement théorique et les points de mesure sur le graphique de la **figure 18**.

figure 18 – rendement théorique et « mesuré » pour une inclinaison i = 0° et un isolant en polystyrène expansé

La droite de régression (non représentée ici) obtenue à partir des points mesurés donne les valeurs suivantes de la pente et de l'ordonnée à x = 0, comparées à celles théoriques (**tableau 6**):

	pente = -FT* <u>k'a</u>	<u>eta''(0)</u> = FT*nu*
droite de régression (mesures)	-4,48	0,78
droite rendem ent calculée	-5,03	0,81

tableau 6 – droite de régression et droite de rendement théorique (inclinaison i = 0°, polystyrène expansé)

Les résultats théoriques et issus des « mesures » concordent assez bien. Néanmoins, ils sont obtenus

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 34/111

pour d'assez faibles valeurs de $(T_{ef} - T_a)/\phi_{ST}$: on est très loin de la zone de stagnation pour laquelle on a $(T_{efmax} - T_a)/\phi_{ST} = v^*k_a' = 0,16 \text{ K/m}^2/\text{W}$ puisque l'on ne dépasse pas 0,02. Il est donc impossible de conclure à une concordance sur l'ensemble de la droite de rendement, d'autant que le dispositif d'expérimentation en circuit fermé semble être responsable de la difficulté à obtenir des T_{ef} plus importantes.

2.3.4 – Comparaison du rendement théorique et du rendement « mesuré » à inclinaison nulle, avec comme isolant la laine de verre

L'instant des mesures a été choisi de telle sorte que les températures de la plaque et de la vitre mesurées soient encore égales et fixes durant les différentes mesures de T_{sf} et T_{ef}, à T_P = 73°C, T_C = 51°C.

A partir de cela, les calculs ont fourni les résultats suivants (tableau 7):

$T_{P} = 73^{\circ}C - T_{C} = 51^{\circ}C$							
Fτ	h _{PCR} W/m²/K	k _{Ca} W/m²/K	Gr	h _{PCN} W/m²/K	k _{PC} W/m²/K	k _a ' W/m²/K	
0,9789	6,358	13,88	6.10 ^₅	1,525	7,88	5,878	

tableau 7 – facteur de transfert thermique et conductance thermique globale pour le capteur horizontal, avec polystyrène expansé comme isolant arrière

Comme précédemment, en mesurant à plusieurs reprises au cours du cycle de l'eau les températures d'entrée T_{ef} et de sortie T_{sf} , et en utilisant les valeurs de ϕ_{ST} , F_T , ν^* , k_a' pour le calcul du rendement théorique η ", et q* pour le calcul direct du rendement « mesuré » η "_{mesuré}, on obtient la droite de rendement théorique et les points de mesure sur le graphique de la **figure 19**.

figure 19 – rendement théorique et « mesuré » pour une inclinaison i = 0° et un isolant en laine de verre

La droite de régression (non représentée ici) obtenue à partir des points mesurés donne les valeurs suivantes de la pente et de l'ordonnée à x = 0, comparées à celles théoriques (**tableau 8**):

	pente = -FT*k'a	<u>eta''(0)</u> = FT*nu*	
droite de régression (mesures)	-6,94		0,79
droite rendem ent calculée	-5,75		0,81

tableau 8 – droite de régression et droite de rendement théorique (inclinaison i = 0°, laine de verre)

Mêmes remarques que pour les mesures précédentes.

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 35/111

Pour les résultats théoriques comme pour les résultats « mesurés », l'emploi de la laine de verre semble montrer, tout au moins aux faibles T_{ef} , une pente, et donc une conductance un peu plus élevée en valeur absolue, ce qui permet de conclure que, à conditions identiques, les pertes globales sont un peu plus importantes que pour le polystyrène expansé.

2.3.5 – Calculs et mesures de l'effet de l'inclinaison sur le rendement (isolant: laine de verre)

Aux mêmes conditions fixées qu'au **point 2.3.4**, avec la laine de verre comme isolant arrière, les calculs et les mesures du rendement en $T_{ef} = T_a$ (température d'entrée égale à la température ambiante, donc à l'origine x = 0), pour différents angles d'inclinaison i (i = 0, 30, 45° pour les mesures) donnent les relevés de mesure et la courbe théorique η " = f(i) représentés à la **figure 20**.

figure 20 – évolution du rendement en x = 0 ($T_{ef} = T_a$) en fonction de l'inclinaison i (isolant: laine de verre)

Le maximum prédit pour $i_{max} = 21,35^{\circ}$ est très peu prononcé pour la courbe théorique; les points de mesure semblent montrer également un comportement différent de part et d'autre de cette valeur, mais on dispose de trop peu de points de mesure pour l'affirmer de manière formelle. De toutes manières, l'effet de l'inclinaison sur le rendement est assez étale jusqu'aux environs de 60°.

2.4 – Conclusion

Avec le polystyrène expansé comme avec la laine de verre, en tant qu'isolant arrière, les mesures effectuées aux faibles température d'entrée de l'eau montrent une concordance assez satisfaisante avec les résultats théoriques.

Bien que le rendement « mesuré » soit lui aussi obtenu par un calcul, on peut admettre qu'il est une bonne représentation de ce que l'on obtiendrait par des mesures directes et complètes (mesures de rapport de flux) car son évaluation ne préjuge rien de ce qui se passe théoriquement dans le dispositif: en effet, elle se « contente » de la mesure directe des températures de sortie et d'entrée, de celle du débit et du flux solaire (que l'on peut par ailleurs confirmer par une mesure directe de flux).

Quant au rendement théorique, son obtention par le calcul nécessite de connaître de manière exhaustive tous les processus de transferts thermiques entre les différentes parties du capteur: cette modélisation peut rencontrer certaines difficultés liées au fait que les éléments considérés ne sont pas aussi homogènes et réguliers que cette modélisation suppose. De sorte que l'on serait plus tenté de porter crédit aux mesures de η " qu'aux résultats issus des modèles théoriques qui montrent une tendance à la surestimation (pente théorique plus faible, donc pertes sous-évaluées).

Il reste cependant que l'on doit se demander si le recours à un fonctionnement en circuit fermé pour mesurer le rendement de la maquette de capteur solaire soit bien judicieux au regard de la difficulté constatée de monter en température d'entrée.

En ce sens, de nouvelles manipulations en circuit ouvert, où la température d'entrée est parfaitement contrôlée, seraient un plus.

Enfin, la fixation de conditions, comme les températures de vitre et de plaque, semble douteuse si l'on se souvient que ces valeurs sont en interaction plus ou moins prononcée, avec les températures
obtenues dans la cavité, l'isolant et le fluide caloporteur. D'autant que nous avons vu à l'**exercice (a) du point 1.2.3** combien la détermination exacte de T_c est délicate et que l'on ne peut procéder que par approximations. A ceci s'ajoute la dépendance des propriétés de l'air de la cavité et de l'eau dans les tuyaux avec la température, qui n'a aucune raison d'être uniforme et constante au cours d'un cycle. Ces considérations incitent à la prudence vis-à-vis des valeurs et des performances annoncées, et avec les capteurs thermosolaires, il faut bien souvent se contenter d'une précision toute relative. Mais ceci n'enlève en rien la possibilité de comparer, en relatif, des performances d'équipements obtenues avec ces mêmes imprécisions.

ANNEXES

A1 – TRANSFERT THERMIQUE PAR RAYONNEMENT, EFFET DE SERRE

A1.1 – Loi du rayonnement (Planck), puissance thermique rayonnée (Stefan)

Pour une fréquence (ou une longueur d'onde) donnée, un rayonnement électromagnétique n'a pas la même densité d'énergie selon la température. Cette dépendance est exprimée par la loi de Planck, valide dans tout le spectre électromagnétique (domaines du visible, infrarouge, ultraviolet, X, gamma, hyperfréquences, etc.):

La *densité spectrale volumique d'énergie* u_v est l'énergie volumique transportée par un rayonnement électromagnétique dans un intervalle de fréquences comprises entre v et v+dv; elle varie avec la température absolue T (en kelvin) selon la *loi de Planck*:

$$u_{\nu}(\nu, T) = \frac{d^2 W}{dV \, d\nu} = \frac{8 \pi h}{c^3} \frac{\nu^3}{e^{h\nu/kT} - 1} \quad (A1.1)$$

 u_{v} est exprimée en J/Hz/m³ ou J.s/m³ (²). Dans (A1.1), h = 6,626.10⁻³⁴ J.s constante de Planck, c = 3.10⁸ m/s vitesse de la lumière dans le vide k = 1,38.10⁻²³ J/K constante de Boltzmann.

Dans le domaine des longueurs d'onde on a une expression correspondante à (A1.1): la *densité spectrale volumique d'énergie* u_{λ} du rayonnement dans un intervalle de longueurs d'onde comprises entre λ et λ +d λ : $u_{\lambda}(\lambda, T) = \frac{d^2W}{dVd\lambda}$ (en J/m/m³ soit Jm⁻⁴). Or la densité volumique d'énergie reste la même, qu'on l'exprime avec les fréquences ou avec les longueurs d'onde:

$$\frac{dW}{dV} = u_{\lambda}(\lambda, T) d\lambda = u_{\nu}(\nu, T) d\nu \text{ d'où:} u_{\lambda} = u_{\nu} \frac{d\nu}{d\lambda}$$

Or: $\lambda = c/\nu$ donc $d\nu/d\lambda = -c/\lambda^2 \rightarrow u_{\lambda} = u_{\nu} \frac{c}{\lambda^2}$ d'où:

$$u_{\lambda}(\lambda, T) = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{hc/k\lambda T} - 1}$$
 (A1.2)

L'énergie émise par une source thermique dans un élément de volume dV et sur un intervalle du spectre $d\lambda$ est donc:

$$u_{\lambda}(\lambda, T) d\lambda dV$$
 (en joules)

De (A1.1) ou (A1.2) on déduit immédiatement le:

² La démonstration de la loi de Planck, comme conséquence de la théorie quantique, a fait l'objet d'un de mes articles du site: Loi de l'émission du rayonnement (loi de Planck): une démonstration quantique - par Frédéric Élie, 2003, article édité en avril 2014. Noter aussi que $u_{y}(v, T)$ a les dimensions d'une action volumique.

Théorème: *Ioi du déplacement de Wien* pour un rayonnement électromagnétique – Un rayonnement électromagnétique dont le spectre est fini, émis par une source à la température T, a son maximum de puissance pour une longueur d'onde inversement proportionnelle à T:

$$\lambda_{\max} = \frac{b}{T}$$
 (A1.3)

où la constante $b = \frac{hc}{4,965 k} = 2,898.10^{-3} (m.K)$. Si on exprime les longueurs d'onde en mm, (A1.3) s'écrit en pratique:

$$\lambda_{\max}(mm) = \frac{2898}{T}$$

PREUVE – D'après (A1.1) la densité spectrale volumique d'énergie est de la forme:

$$u_{\nu}(\nu, T) = \nu^3 f\left(\frac{\nu}{T}\right)$$

Le maximum est atteint à une fréquence pour laquelle la dérivée s'annule:

$$\frac{du_{\nu}}{d\nu} = 3\nu^2 f\left(\frac{\nu}{T}\right) + \frac{\nu^3}{T}f'\left(\frac{\nu}{T}\right) = 0$$

Cette équation montre que le maximum est atteint pour une certaine valeur de v/T, soit v_{max}/T quelle que soit T, donc: $v_{max}/T = cste$. Comme $v_{max} = c/\lambda_{max}$ on a: $\lambda_{max}T = cste = b$, qui est la loi de Wien. L'explicitation des calculs de $du_v/dv=0$ donne la valeur de la constante b vue plus haut – CQFD.

De la loi de Planck sous la forme (A1.2) on déduit aussi le nombre de photons N(T) contenus dans un volume V avec une distribution spectrale u_{λ} :

$$N(T)=2\frac{\text{énergie totale des photons composant le rayonnement}}{\text{énergie d'un photon}}$$

(le facteur 2 est introduit pour tenir compte du fait que chaque photon possède 2 polarisations possibles). Donc:

$$N(T) = 2 \int_{0}^{\infty} \frac{u_{\lambda}(\lambda, T) d\lambda dV}{h\nu}$$

où l'intégrale est sur l'étendue du spectre. Comme $\lambda = c/\nu$ et d'après (A1.2):

$$N(T) = 2 \int_{0}^{\infty} \frac{8\pi c h}{\lambda^{5}} \frac{1}{h c} \frac{\lambda}{e^{hc/k T \lambda} - 1} d\lambda dV$$

Or la distribution spectrale est la même quelle que soit la localisation des photons dans le volume (isotropie), λ est donc indépendante de V, d'où:

$$N(T) = 2 \times 8 \pi V \int_{0}^{\infty} \frac{d\lambda}{\lambda^{4} (e^{hc/kT\lambda} - 1)}$$

après quelques manipulations calculatoires sans difficultés, on trouve la densité volumique des photons:

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 38/111

$$\frac{N(T)}{V} = n_{eq}(T) = 0,244 \left(\frac{kT}{\hbar c}\right)^3$$
 (A1.6)

où $\hbar = h/2\pi$. Cette densité volumique des photons associés à un rayonnement dépend uniquement de la température et croît comme T³. On s'attend donc à ce que la puissance rayonnée soit proportionnelle à N(T), donc à (kT)³ multipliée par l'énergie élémentaire kT, donc à (kT)⁴. C'est ce que confirme la loi de Stefan-Boltzmann que nous allons voir ci-après.

De la loi de Planck (A1.2) on déduit en effet l'expression de la puissance rayonnée dans tout le demiespace et dans tout le spectre par une unité de surface unité de la source d'émission thermique: c'est la loi de Stefan-Boltzmann.

Théorème: *Ioi de Stefan-Boltzmann* – On appelle *exitance énergétique*, ou encore *densité de flux radiatif*, la puissance rayonnée par unité de surface d'une source d'émission thermique, sur tout le spectre et dans le demi-espace; on la note M(T), ou encore $\varphi(T)$ (comme un flux de puissance émis par une surface ou traversant cette surface, les deux situations étant équivalentes en vertu de l'équilibre thermique comme on le verra). Elle est égale à:

$$M(T) = \varphi(T) = \sigma T^4$$
 (en W/m²) (A1.7)

où σ est la constante de Stefan:

$$\sigma = \frac{2\pi^5}{15} \frac{k^4}{c^2 h^3} = 5,67.10^{-8} \text{ (en Wm^{-2}K^{-4})} \text{ (A1.8)}$$

(on a bien la puissance surfacique qui varie comme $(kT)^4$).

La démonstration de (A1.7) nécessite l'emploi des définitions des grandeurs spectrales, et des grandeurs totales d'une part, et des grandeurs directionnelles et des grandeurs hémisphériques d'autre part, pour caractériser les puissances rayonnées.

- Les grandeurs spectrales (ou monochromatiques) s'expriment en fonction de chaque fréquence v ou longueur d'onde λ du spectre électromagnétique
- Les grandeurs totales s'expriment pour l'ensemble du spectre électromagnétique: elles sont donc calculées par intégration des grandeurs spectrales sur l'ensemble du spectre
- Les grandeurs directionnelles sont définies pour une direction dans l'espace définie, en coordonnées polaires, par les angles d'azimut d α et d'élévation d β ; le secteur de l'espace défini par ces angles est un cône dont le sommet est l'origine de la source d'émission et d'angle solide $d\Omega = \sin \beta d\beta d\alpha$ (mesuré en stéradians *sr*) (**figure A1.1**)
- Les grandeurs hémisphériques sont définies pour l'ensemble du demi-espace: elles sont donc calculées par intégration des grandeurs directionnelles sur tout le demi-espace, dont l'angle solide est Ω = 4π.

figure A1.1

Définition: Iuminance énergétique monochromatique d'une source de rayonnement: - Notée $L_{\lambda}(\lambda,T)$, elle intervient dans: la puissance rayonnée par un élément de surface dS, dans le domaine élémentaire

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 39/111

de longueur d'onde (λ , λ +d λ), dans un secteur de l'espace défini par l'angle solide d Ω et de direction comprise entre (α , α +d α) et (β , β +d β) est égale à:

$$L_{\lambda}(\lambda, T) \cos \beta \, d \, S \, d \, \Omega \, d \, \lambda$$

Unités de $L_{\lambda}(\lambda,T)$: Wm⁻²m⁻¹sr⁻¹; c'est une grandeur à la fois spectrale et directionnelle.

Définition: exitance énergétique monochromatique: - Notée $M_{\lambda}(\lambda,T)$, elle est l'intégration de $L_{\lambda}(\lambda,T)$ dans toutes les directions du demi-espace:

$$M_{\lambda}(\lambda, T) = \int_{\text{demi-espace}} L_{\lambda}(\lambda, T) \cos \beta \, d\,\Omega \quad (A1.9)$$

Elle intervient dans: la puissance rayonnée par un élément de surface dS, dans le domaine élémentaire de longueur d'onde (λ , λ +d λ) dans l'ensemble du demi-espace est égale à:

$$M_{\lambda}(\lambda, T) dS d \lambda$$

Unités de $M_{\lambda}(\lambda,T)$: Wm⁻²m⁻¹; c'est une grandeur à la fois spectrale et hémisphérique. L'intégration de (A1.9) est immédiate, puisque le rayonnement est isotrope et donc les grandeurs spectrales indépendantes des directions de l'espace:

$$M_{\lambda}(\lambda, T) = L_{\lambda}(\lambda, T) \int_{\text{demi-espace}} \cos\beta \, d\,\Omega = L_{\lambda}(\lambda, T) \int_{\alpha=0}^{2\pi} d\,\alpha \int_{\beta=0}^{\pi/2} \cos\beta \sin\beta \, d\,\beta$$

ce qui donne:

$$M_{\lambda}(\lambda, T) = \pi L_{\lambda}(\lambda, T)$$
 (A1.10)

Définition: Iuminance énergétique totale – Notée L(T), elle est l'intégration de $L_{\lambda}(\lambda,T)$ sur tout le spectre:

$$L(T) = \int_{0}^{\infty} L_{\lambda}(\lambda, T) d\lambda \quad (A1.11)$$

Elle intervient dans: la puissance rayonnée par un élément de surface dS sur tout le spectre, dans l'angle solide d Ω et de direction comprise entre ($\alpha,\alpha+d\alpha$) et ($\beta,\beta+d\beta$) est égale à:

$$L(T)\cos\beta dS d\Omega$$

Unités de L(T): Wm⁻²sr⁻¹: c'est une grandeur totale directionnelle.

Définition: exitance énergétique (ou densité de flux radiatif) – Notée M(T), elle est l'intégration de $M_{\lambda}(\lambda,T)$ sur tout le spectre:

$$M(T) = \int_{0}^{\infty} M_{\lambda}(\lambda, T) d\lambda \quad (A1.12)$$

Elle intervient dans: la puissance rayonnée par un élément de surface dS sur tout le spectre et dans le demi-espace hémisphérique est égale à:

$$d\Phi(T) = M(T) dS$$
 (en watts)

Unités de M(T): Wm⁻²; c'est une grandeur totale hémisphérique. Comme M(T) ne dépend que de la température, le flux de puissance, ou flux radiatif, rayonnée par la surface finie S est:

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 40/111

 $\Phi(T)(W) = M(T)S$

Remarque: de la définition de M_{λ}(λ ,T) on a aussi: $M(T) = \int_{\text{demi-espace}} L(T) \cos \beta \, d \, \Omega = \pi \, L(T)$

Nous sommes maintenant en mesure de démontrer (A1.7) en déterminant $M_{\lambda}(\lambda,T)$ par le raisonnement suivant.

PREUVE DE (A1.7) – Dans une cavité formée d'une calotte hémisphérique de rayon indéfini, et à la base de laquelle se place une source de rayonnement thermique de surface S (cf. **figure A1.1**), on écrit la condition d'équilibre thermique entre la source et le volume de cette cavité:

Le rayonnement du corps noir dans la cavité est exactement contrebalancé par le rayonnement thermique que la cavité lui renvoie; il est isotrope et dépend seulement de la température T.

Il est équivalent de poser que le corps noir émet la même quantité de rayonnement qu'il en reçoit de la part du volume contenu dans la cavité hémisphérique.

En termes de bilan thermique, cela revient à écrire: la luminance énergétique spectrale de la cavité, notée $W_{\lambda}(\lambda,T)$ est égale à la luminance énergétique spectrale du corps noir $M_{\lambda}(\lambda,T)$. La détermination de $W_{\lambda}(\lambda,T)$ permettra donc celle de $M_{\lambda}(\lambda,T)$, d'où l'on tirera M(T) par intégration:

 $M_{\lambda}(\lambda, T) dS d\lambda = W_{\lambda}(\lambda, T) dS d\lambda$ corps noir cavité

Pour déterminer $W_{\lambda}(\lambda,T)$ on s'intéresse donc à la distribution de l'énergie spectrale issue de la cavité dans le volume de celle-ci: soit $u_{\lambda}(\lambda,T)$ la densité volumique d'énergie spectrale dans le domaine $(\lambda,\lambda+d\lambda)$ (c'est évidemment une grandeur spectrale hémisphérique). Elle est liée au nombre n_{λ} de photons dans le domaine $(\lambda,\lambda+d\lambda)$, d'énergie individuelle hc/ λ :

$$u_{\lambda} = n_{\lambda} h \frac{c}{\lambda}$$
 (A1.13)

Comme le rayonnement dans la cavité est isotrope, le nombre de photons dans l'angle solide d Ω est proportionnel au rapport d $\Omega/4\pi$:

$$d n_{\lambda}(d\Omega) = n_{\lambda} \frac{d\Omega}{4\pi}$$
 avec $d\Omega = \sin\beta d\beta d\alpha$

Le nombre de photons reçus sur dS contenus dans l'angle solide d Ω dans la direction β , et qui ont parcouru la distance dr = c dt, est:

$$d n_{\lambda} (dS, d\Omega) = d n_{\lambda} (d\Omega) \cos \beta dS dr$$

Le taux de photons issus du rayonnement de la cavité atteignant dS par unité de temps est donc:

$$\frac{d n_{\lambda}(dS, d\Omega)}{dt} = c d n_{\lambda}(d\Omega) \cos\beta dS = c n_{\lambda} \frac{d\Omega}{4\pi} \cos\beta dS = \frac{c}{4\pi} n_{\lambda} \sin\beta \cos\beta d\beta d\alpha dS$$

L'énergie traversant dS par unité de temps est donc:

$$W_{\lambda} = \int_{\text{demi-espace}} \frac{d n_{\lambda}}{d S d t} (dS, d\Omega) \frac{hc}{\lambda}$$

soit:

$$W_{\lambda} = \frac{hc}{\lambda} c n_{\lambda} \frac{1}{4\pi} \int_{\alpha=0}^{2\pi} d\alpha \int_{\beta}^{\pi/2} \sin\beta \cos\beta d\beta = \frac{1}{4} \frac{hc}{\lambda} c n_{\lambda}$$

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 41/111

Or d'après (A1.13): $n_{\lambda} \frac{hc}{\lambda} = u_{\lambda}$ d'où: $W_{\lambda} = \frac{c}{4}u_{\lambda}$; mais d'après l'hypothèse de l'équilibre thermique, W_{λ} est égale à la luminance énergétique spectrale du corps noir $M_{\lambda}(\lambda,T)$, ainsi:

$$M_{\lambda}(\lambda,T) = \frac{c}{4} u_{\lambda}(\lambda,T) \quad \text{(A1.14) (en Jm-1m-3)}$$

c'est-à-dire des joules par volume et par longueur d'onde. Or u_{λ} est donnée par la loi de Planck (A1.2), d'où:

$$M_{\lambda}(\lambda,T) = \frac{2\pi h}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$
(A1.15)

L'intégration de (A1.15) sur le spectre $M(T) = \int M_{\lambda}(\lambda, T) d\lambda$ donne tout calcul fait la loi de Stefan-

$$\frac{de(A1.10)}{0} \frac{de(A1.10)}{dt} = \frac{de(A1.10)}{0} \frac{de(A1.10)}{dt}$$

Boltzmann:

$$M(T) = \sigma T^4$$

En vertu du critère d'équilibre thermique, on peut énoncer que le flux de puissance reçu sur une surface unité dans la cavité emplie du rayonnement du corps noir, $\phi(T)$, est aussi égal à l'exitance énergétique de la source de rayonnement du corps noir et suit également la loi de Stefan-Boltzmann (A1.7). On peut donc écrire, puisque ce flux dépend seulement de la température T: puissance $\Phi(en W) = \phi(T)S - \phi(T)S$ CQFD.

Remarques:

- De la loi de Planck (A1.2) on déduit aussi la densité volumique d'énergie totale du rayonnement du corps noir dans la cavité:

$$u(T) = \frac{dU}{dV} = \int_{\lambda=0}^{\infty} u_{\lambda}(\lambda, T) d\lambda$$
 en Jm⁻³

soit:

$$u(T) = \frac{4}{c} \sigma T^4$$
 (A1.16)

– De (A1.10) et (A1.15) on tire la luminance énergétique monochromatique:

$$L_{\lambda}(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda k T} - 1}$$
 (en Wm-2m-1sr-1) (A1.17)

Par intégration sur le spectre de (A1.17) on obtient la luminance énergétique totale:

$$L(T) = \int_{0}^{\infty} L_{\lambda}(\lambda, T) d\lambda$$

soit:

$$L(T) = \frac{2\pi^4 k^4}{15h^3 c^2} T^4 \quad \text{(en Wm-2sr-1)} \quad \text{(A1.18)}$$

Remarque: la loi de Planck est souvent donnée sous la forme (A1.17) à la place de (A1.7) (figure A1.2).

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 42/111

figure A1.2 – loi de Planck pour la luminance énergétique monochromatique $L_{\lambda}(\lambda,T)$ Remarque: le lieu des maximums de $L_{\lambda}(\lambda,T)$ donne une courbe qui suit la loi de Wien

Quelques valeurs:

- T = 290 K (17°C) $\rightarrow \phi(T) = M(T) = 400$ W/m², $\lambda_{max} = 10 \ \mu m$ (domaine IR)
- T = 310 K (37°C) température du corps humain $\rightarrow \phi(T)$ = M(T) = 523 W/m², λ_{max} = 9,35 μm (domaine IR)
- T = 2900 K température du filament en tungstène d'une ampoule incandescente $\rightarrow \phi(T) = M(T) = 4 MW/m^2$, $\lambda_{max} = 1 \ \mu m$ (domaine proche IR)
- T = 5800 K température de surface du Soleil $\rightarrow \phi(T)$ = M(T) = 64 MW/m², λ_{max} = 0,5 μm (domaine visible vert)

Absorption et diffusion du rayonnement incident par un matériau: - Comme tout rayonnement électromagnétique, le rayonnement thermique interagit avec la matière par deux processus:

- absorption: une fraction de l'énergie incidente est transmise à la matière
- diffusion: une autre fraction de l'énergie incidente est réémise

ces deux processus dépendent de la longueur d'onde λ .

Soit la puissance incidente reçue par le matériau de surface S: Φ_i (en watts); c'est l'intégrale de l'exitance ou densité de flux radiatif ϕ_i (T) (ou encore M_i (T)) sur la surface réceptrice:

$$\Phi_i = \iint_S M_i(T) dS = \iint_S \varphi_i(T) dS = \varphi_i(T)S$$

la puissance incidente se décompose alors en puissance absorbée Φ_a et en une puissance diffusée (ou réémise) Φ_r :

$$\Phi_i = \Phi_a + \Phi_i$$

(pour les flux, cette relation correspond, avec les notations évidentes, à: $\Phi_i = \Phi_a + \Phi_r$)³.

Mais le matériau peut émettre aussi vers l'extérieur un rayonnement thermique propre, issu de son énergie interne, de puissance Φ_e et de flux ϕ_e (T). La puissance thermique du matériau vers l'extérieur est donc la différence entre la puissance émise en propre et la puissance absorbée, elle est notée Φ_R :

$$\Phi_R = \Phi_e - \Phi_a$$

Comme, en pratique, on connaît plus volontiers les flux incidents et émis, la relation précédente se réécrit:

³ Le flux incident φ_i est encore appelé « *éclairement* » et parfois noté E (en W/m²)

$$\Phi_{R} = \Phi_{e} + \Phi_{r} - \Phi_{i}$$
 (A1.19a)

et son équivalente pour les flux:

$$\Phi_R = \Phi_e + \Phi_r - \Phi_i$$
 (A1.19b)

Il y a *équilibre thermique radiatif* lorsque l'énergie absorbée est exactement compensée par l'énergie émise en propre:

$$\Phi_e = \Phi_a \rightarrow \Phi_R = 0 \rightarrow \Phi_i = \Phi_a + \Phi_r$$
 (A1.20)

donc lorsque l'énergie incidente se décompose exactement en énergie absorbée et en énergie réémise (diffusée).

Comme les flux de puissance sont les intégrales sur le spectre des exitances énergétiques monochromatiques $M_{\lambda}(\lambda,T)$ (définition (A1.9)), toutes les relations ci-dessus s'écrivent aussi pour elles. On aurait donc ainsi, par exemple, pour l'équilibre thermique radiatif: $M_{e,\lambda}(\lambda,T) = M_{a,\lambda}(\lambda,T)$ pour toute longueur d'onde λ .

De façon générale, on définit le *coefficient d'absorption*, pour chaque longueur d'onde, par le taux d'absorption de l'onde incidente; c'est une grandeur spectrale:

$$a(\lambda) = \frac{M_{a,\lambda}(\lambda, T)}{M_{i,\lambda}(\lambda, T)} = \frac{\text{énergie absorbée}}{\text{énergie incidente}} \le 1 \quad (A1.21)$$

Dans le cas de l'équilibre thermique radiatif, (A1.21) s'écrit aussi: $M_{e,\lambda}(\lambda, T) = a(\lambda)M_{i,\lambda}(\lambda, T)$. Or $M_{e,\lambda}(\lambda,T)$ ne change pas, qu'il y ait ou non équilibre thermique, car elle ne dépend que du matériau. Cela suggère que $a(\lambda)$ représente aussi les propriétés d'émission du corps, que l'on appelle *émissivité spectrale* $\epsilon(\lambda)$, et donc de poser:

$$a(\lambda) = \epsilon(\lambda)$$

C'est ce qu'exprime la loi de Kirchhoff que nous allons voir plus précisément ci-après (point A1.2). Mais ces coefficients absorptivité $a(\lambda)$ ou émissivité $\epsilon(\lambda)$ varient avec le domaine spectral, ce qui a pour conséquences, comme on le verra, le rôle de la sélectivité dans l'effet de serre (point A1.4).

Pour un corps noir, par définition, $a(\lambda) = \varepsilon(\lambda) = 1$ quelle que soit T, donc $M_{e,\lambda}(\lambda, T) = M_{i,\lambda}(\lambda, T)$. Comme cela entraîne $\Phi_e = \Phi_i$ et donc d'après (A1.19b) $\Phi_R = \Phi_e(T) - \Phi_a(T') = \Phi_r$ le flux d'échange avec l'extérieur n'est pas nul: si T est la température du corps noir et T' celle du milieu environnant, d'après la loi de Stefan-Boltzmann, le bilan thermique est:

$$\phi_{R} = \phi_{e}(T) - \phi_{a}(T') = \sigma(T^{4} - T'^{4})$$
 (A1.22)

Si T > T' $\rightarrow \phi_R > 0$: le corps noir cède de l'énergie au milieu extérieur par rayonnement, Si T < T' $\rightarrow \phi_R < 0$: le corps noir reçoit de l'énergie et s'échauffe par le milieu extérieur, Si T = T' $\rightarrow \phi_R = 0$: le corps ne gagne ni ne cède d'énergie, c'est l'équilibre thermique radiatif.

Si $T \approx T'$ un développement au premier ordre de (A1.22) conduit à l'approximation linéaire:

ce qui introduit une résistance thermique de transfert par rayonnement: $R = 1/h_R$.

A1.2 – Emittance, émissivité, loi de Kirchhoff

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 44/111

On note traditionnellement par un exposant « 0 » les grandeurs qui concernent le corps noir, ainsi: $M_{i,\lambda^0}(\lambda,T), M_{e,\lambda^0}(\lambda,T), \phi_{\lambda^0}$, etc...

On a vu l'absorptivité (ou coefficient d'absorption spectrale):

$$a_{\lambda} = a(\lambda) = \frac{M_{a,\lambda}}{M_{i,\lambda}} = \frac{\Phi_{a,\lambda}}{\Phi_{i,\lambda}} \rightarrow \text{à l'équilibre radiatif:} \quad M_{e,\lambda} = a_{\lambda}M_{i,\lambda} \quad \text{et} \quad M_{e,\lambda} = M_{a,\lambda}$$

Par ailleurs, *l'émissivité* représente l'écart de l'émission d'un corps quelconque par rapport à celle du corps noir:

$$\epsilon_{\lambda} = \frac{\Phi_{e,\lambda}}{\Phi_{e,\lambda}^{0}} = \frac{M_{e,\lambda}}{M_{e,\lambda}^{0}} = a_{\lambda} \frac{M_{i,\lambda}}{M_{e,\lambda}^{0}} = a_{\lambda} \frac{M_{i,\lambda}}{a_{\lambda}^{0} M_{i,\lambda}^{0}} = a_{\lambda} \frac{M_{i,\lambda}}{M_{i,\lambda}^{0}} \quad \text{car} \quad a_{\lambda}^{0} = 1$$

Or le flux incident est indépendant, bien sûr, de la nature du corps récepteur: $M_{i,\lambda} = M_{i,\lambda}^0$, d'où la *loi de Kirchhoff*:

$$a_{\lambda} = \varepsilon_{\lambda}$$
 (A1.24)

Pour un corps noir, $a_{\lambda}^{0}=1$, donc le corps noir absorbe toutes les radiations de longueurs d'onde λ à toutes les températures T, sans en réfléchir ni transmettre aucune ⁴.

La loi de Kirchhoff affirme qu'un corps absorbe les radiations seulement qu'il peut émettre en propre, pour chaque longueur d'onde.

La loi de Kirchhoff ne s'applique que pour chaque longueur d'onde, et non au rayonnement total, intégré sur le spectre. En général, ε_{λ} ou a_{λ} varient significativement avec la longueur d'onde λ , ce qui introduit d'ailleurs la **sélectivité** du matériau. Mais le cas particulier, quoique fréquent, des **corps gris** correspond à une absorptivité et émissivité quasi indépendantes de la longueur d'onde: ε_{λ} ou $a_{\lambda} = \varepsilon = a = constante$. En effet de tels corps sont optiquement gris.

Mais de façon générale, on a pour l'émission radiative par le corps (émittance):

$$\varphi(T) = \int_{0}^{\infty} a_{\lambda} \varphi_{\lambda} d\lambda = \varepsilon \sigma T^{4} \quad (A1.25)$$

où ε = a est obtenue par intégration sur le spectre et n'est pas égale à ε_{λ} (sauf pour les corps gris): c'est l'*émissivité totale* du matériau.

Exemples: souvenons-nous que ε + r + f = 1 (avec ε = a, loi de Kirchhoff), donc:

- métaux polis: ε faible → r grande: le corps absorbe très peu le rayonnement incident, donc il rayonne très peu comme un corps noir, mais il réfléchit facilement la radiation incidente. Application: une théière revêtue d'argent ou d'aluminium à l'intérieur conserve mieux la chaleur qu'une théière en porcelaine ou céramique, parce qu'elle réfléchit cette chaleur vers le liquide.
- bouteille « thermos »: double paroi intérieurement argentée; ε faible → r grande là aussi. La chaleur du liquide est réfléchie presque intégralement vers l'intérieur et très peu transmise vers l'extérieur. Le vide entre les deux parois élimine les pertes par convection.
- radiateurs: le pouvoir émissif ε vers l'extérieur doit être maximal. Donc ils ne doivent jamais être revêtus de peinture en aluminium (qui est utilisée par contre pour les isolants thermiques), car ils doivent rayonner presque comme un corps noir. Leur rayonnement est maximal dans l'infrarouge.

$$\phi_{i,\lambda} = \phi_{a,\lambda} + \phi_{r,\lambda} + \phi_{f,\lambda}$$

⁴ En fait, le flux incident, lorsqu'il rencontre la surface du matériau, se décompose en: puissance absorbée (fraction a_{λ}), puissance réfléchie (fraction r_{λ}) et puissance transmise dans le volume du corps, ou *pouvoir filtrant* (fraction f_{λ}):

avec $\varphi_{a,\lambda} = a_\lambda \varphi_{i,\lambda}$, $\varphi_{r,\lambda} = r_\lambda \varphi_{i,\lambda}$, $\varphi_{r,\lambda} = f_\lambda \varphi_{i,\lambda}$, ce qui donne: $a_\lambda + r_\lambda + f_\lambda = 1$. Un corps *complètement réfléchissant* correspond à : $r_\lambda = 1$, $a_\lambda = 0$, $f_\lambda = 0$; un corps *opaque* correspond à $f_\lambda = 0$, et $r_\lambda + a_\lambda = 1$ (il ne transmet aucune radiation à travers son volume, pour un corps opaque le transfert thermique dans son volume n'est possible que par conduction thermique); un corps *parfaitement transparent* vérifie: $f_\lambda = 1$, et $r_\lambda = a_\lambda = 0$ (il transmet intégralement le rayonnement incident à travers son volume). Pour un *corps noir*, on a: $a_\lambda^0 = 1$, $r_\lambda^0 = f_\lambda^0 = 0$ (il absorbe intégralement le rayonnement incident, ne réfléchit ni ne transmet rien).

- verre: a = ε grandes pour les radiations visibles, donc r = 1 ε faible: il réfléchit peu le rayonnement incident dans le visible. Mais son absorption a = ε est faible dans l'infrarouge donc r est grande: le verre transmet très peu l'IR et le réfléchit. Une cage en verre placée autour d'un radiateur arrête l'IR qui en émane car elle le réfléchit vers lui. Elle transmet en revanche plus facilement la chaleur émise par le rayonnement visible (T plus élevée), comme dans les cheminées à insert.
- effet de serre: comme ci-dessus, c'est un effet de la sélectivité du verre; a = ε grande dans le visible, donc laisse passer la chaleur du soleil des radiations du visible, et a = ε faible dans le domaine IR, donc réfléchit la chaleur émise par une source IR (r grande). Or le rayonnement IR provient du sol chauffé par les rayons solaires du visible (c'est la réponse thermique du sol), et il est réfléchi vers l'intérieur de la serre, ce qui maintient une chaleur suffisante pour la végétation (cette chaleur serait perdue sans la vitre en verre, à cause des pertes par convection et non confinement de la chaleur produite par la source IR).

Exemple: flux thermique échangé entre deux surfaces (1) et (2) qui rayonnent l'une vers l'autre (figure A1.3) – une surface C_1 émet en propre un flux thermique φ_1 vers une surface C_2 ; la surface C_2 émet en propre un flux thermique φ_2 vers C_1 . Sachant que ces surfaces ont respectivement comme coefficient d'absorption a_1 et a_2 , quel est le bilan de flux thermique échangé entre elles φ_{21} ?

figure A1.3 - flux thermique échangé entre deux parois

On suppose C₁ et C₂ opaques, donc: $f_1 = f_2 = 0 \rightarrow a_1 + r_1 = 1$ et $a_2 + r_2 = 1$.

 C_2 absorbe partiellement ϕ_1 : $a_2\phi_1$, il réfléchit $r_2\phi_1$;

 C_1 absorbe partiellement ϕ_2 : $a_1\phi_2$, il réfléchit $r_1\phi_2$;

Mais $r_2\phi_1$ lorsqu'il atteint C₁ est réfléchi à son tour par lui: $r_1r_2\phi_1$;

De même $r_1\phi_2$ lorsqu'il atteint C_2 est réfléchi à son tour par lui: $r_2r_1\phi_1$;

et ainsi de suite... On admet la simplification suivante: $r_1r_2 \ll 1$ de sorte que ces réflexions multiples sont négligeables.

Il reste donc que le flux incident reçu par C₂, ϕ_{i2} , est la somme du flux émis en propre par C₁ et du flux incident sur C₁, ϕ_{i1} , partiellement réfléchi par lui r₁ ϕ_{i1} :

$$\varphi_{i2} = \varphi_1 + r_1 \varphi_{i1}$$

De même, le flux incident reçu par C₁, ϕ_{i1} , est la somme du flux émis en propre par C₂ et du flux incident sur C₂, ϕ_{i2} , partiellement réfléchi par lui $r_2\phi_{i2}$:

$$\varphi_{i1} = \varphi_2 + r_2 \varphi_{i2}$$

Les flux incidents ϕ_{i1} et ϕ_{i2} sont a priori inconnus, mais ils peuvent s'exprimer à l'aide des flux propres ϕ_1 et ϕ_2 et des coefficients de réflexion r_1 et r_2 en résolvant le système linéaire précédent:

$$\phi_{i2} = \frac{\phi_1 + r_1 \phi_2}{1 - r_1 r_2}$$
$$\phi_{i1} = \frac{\phi_2 + r_2 \phi_1}{1 - r_1 r_2}$$

Le flux échangé entre ces deux surfaces φ_{21} est la différence de ces deux flux incidents:

$$\Phi_{21} = \Phi_{i2} - \Phi_{i1} = \frac{(1 - r_2)\Phi_1 - (1 - r_1)\Phi_2}{1 - r_1 r_2} = \frac{a_2\Phi_1 - a_1\Phi_2}{a_2 + a_1 - a_1 a_2} = \frac{1}{\frac{1}{a_1} + \frac{1}{a_2} - 1} \left(\frac{\Phi_1}{a_1} - \frac{\Phi_2}{a_2}\right)$$

Or: $\frac{\Phi_1}{a_1} = \Phi_1^0$ $\frac{\Phi_2}{a_2} = \Phi_2^0$ avec $a_1 = \varepsilon_1$ et $a_2 = \varepsilon_2$; $\Phi_1^0 = \sigma T_1^4$ et $\Phi_2^0 = \sigma T_2^4$ où T_1 et T_2 températures de C₁ et C₂. Finalement:

$$\phi_{21} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1}{a_1} + \frac{1}{a_2} - 1} \quad (A1.26)$$

Exemple numérique: si les flux sont exprimés en kcal/h/m², les tables donnent souvent σ_{a_k} en kcal/h/m²/K⁴, avec donc σ = 5,67.10⁻⁸ W/m²/K⁴ = 4,88.10⁻⁸ kcal/h/m²/K⁴ (puisque 1 kcal/h = 1,163 W). Considérons donc un four en acier à T₁ = 530°C en face d'un mur de plâtre à T₂ = 10°C; les tables donnent: σ_{a_1} = 4,77 et σ_{a_2} = 4,48 (en kcal/h/m²/K⁴). Alors:

$$\sigma/(1/a_1 + 1/a_2 - 1) = 1/(1/\sigma a_1 + 1/\sigma a_2 - 1/\sigma) = 1/(1/4,77 + 1/4,48 - 1/4,88) = 4,39 \text{ kcal/h/m}^2/\text{K}^4$$

d'où:
$$\phi_{21} = 4,39 \times \left(\left(\frac{273 + 530}{100} \right)^4 - \left(\frac{273 + 10}{100} \right)^4 \right) = 17971 \text{ kcal/h/m}^2$$

On intercale maintenant un écran (E) entre C₁ et C₂ (**figure A1.4**), dans le but de diminuer l'échange calorifique entre ces deux surfaces. On note $k_E = \sigma a_E$ le coefficient de transfert de l'écran (en kcal/h/m²/K⁴). Dans l'hypothèse où les deux surfaces C₁ et C₂ ont un coefficient de transfert pratiquement identique (k₁ = k₂ avec k₁ = σa_1 et k₂ = σa_2), quelle condition doit vérifier k_E pour que l'écran remplisse son rôle?

La température de l'écran est T_E et l'on suppose l'égalité des flux entre C_1 et (E) d'une part et entre C_2 et (E) d'autre part.

On applique le raisonnement précédent deux fois, entre C1 et (E) et entre C2 et (E).

figure A1.4 – échange de flux thermique entre deux corps séparés par un écran

Entre C_1 et (E), (A1.26) devient:

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 47/111

$$\phi_{1E} = \frac{1}{\frac{1}{k_1} + \frac{1}{k_E} - \frac{1}{\sigma}} (T_1^4 - T_E^4)$$

et entre (E) et C2, (A1.26) devient:

$$\Phi_{E2} = \frac{1}{\frac{1}{k_E} + \frac{1}{k_2} - \frac{1}{\sigma}} (T_E^4 - T_2^4)$$

Par hypothèse: $\Phi_{1E} = \Phi_{E2}$ et k₁ = k₂, donc:

$$T_{E}^{4} = \frac{1}{2}(T_{1}^{4} + T_{2}^{4}) \text{ d'où:} \qquad \Phi_{1E} = \Phi_{E2} = \frac{1}{2} \frac{1}{\frac{1}{k_{E}} + \frac{1}{k_{1}} - \frac{1}{\sigma}}(T_{1}^{4} - T_{2}^{4})$$
cas sans écran correspond à
$$\Phi_{21} = \frac{1}{\frac{2}{k_{1}} - \frac{1}{\sigma}}(T_{1}^{4} - T_{2}^{4})$$
; le rapport des flux entre les deux

le cas sans écran correspond à configurations est alors:

$$\frac{\Phi_{1E}}{\Phi_{21}} = \frac{1}{2} \frac{\frac{2}{k_1} - \frac{1}{\sigma}}{\frac{1}{k_1} + \frac{1}{k_E} - \frac{1}{\sigma}}$$
(A1.27)

L'écran est efficace (il isole d'autant mieux les deux surfaces) si $\varphi_{1E} \ll \varphi_{21}$ donc si:

$$k_E \ll 2\sigma$$
 (A1.28)

un écran de surface polie satisfait cette condition (exemple: $k_E = 0,10 \text{ kcal/h/m}^2/\text{K}^4$).

A1.3 – Importance de la sélectivité pour l'absorbeur du capteur solaire

La surface absorbante du capteur solaire est la surface qui reçoit le flux solaire total ϕ_{ST} modifié par l'effet de serre, qui est la somme du rayonnement direct et du rayonnement diffus, et qui le transmet au fluide caloporteur.

On a vu que l'émissivité ɛ est identique à l'absorptivité « a » et qu'elle dépend du domaine de longueur d'onde (loi de Kirchhoff):

$$\varepsilon(\lambda) = a(\lambda)$$

Une surface est sélective lorsque $\varepsilon(\lambda)$ est grande pour un certain domaine de longueurs d'onde (λ_1, λ_c) et faible pour un autre (λ_{C}, λ_{2}):

Une surface sélective absorbe donc les rayonnements dont $\lambda_1 < \lambda < \lambda_c$ et réfléchit ceux dont $\lambda_c < \lambda < \lambda_2$ (en effet, ε grande pour $\lambda_1 < \lambda < \lambda_c$ entraîne a grande donc grande absorption, et ε petite pour $\lambda_c < \lambda < \lambda_2$ entraîne $r = 1 - a = 1 - \varepsilon$ réflectivité importante).

Notations: $\varepsilon^* = a^* \text{ pour } \lambda_1 < \lambda < \lambda_C$

 ε = a pour $\lambda_{\rm C} < \lambda < \lambda_2$

 $\lambda_{\rm C}$ est la longueur d'onde de coupure (figure A1.5).

Pour un capteur solaire, on cherche:

- une grande sélectivité:
 - grande absorption du domaine visible du rayonnement solaire (pour transmettre son énergie au fluide caloporteur)
 - grande réflexion du domaine IR du rayonnement solaire (pour maintenir la chaleur dans la cavité par effet de serre)
- une bande spectrale absorbée: $\lambda < \lambda_c = 2,5 \ \mu m$ (visible et proche IR)
 - une bande spectrale réfléchie: $\lambda > \lambda_c = 2,5 \ \mu m (IR)$

Pour la plupart des matériaux en technologie de conversion thermosolaire: λ_c = 2,5 à 3 µm.

NB: Cette propriété est importante surtout pour le revêtement du matériau absorbant (peinture) plus que pour le matériau lui-même. Par contre, le matériau devra avoir une bonne conductivité thermique pour transmettre la chaleur reçue au fluide caloporteur qui circule dans les tuyaux d'eau.

En résumé: l'absorbeur devra absorber le rayonnement solaire visible et proche IR et réfléchir la partie IR de ce rayonnement, donc avoir une sélectivité ϵ^*/ϵ de l'ordre de 1 et plus.

état de surface des matériaux	a* = ε*	a = ε	sélectivité ε*/ε
Cuivre poli absorbe peu le visible: a* = 0,25 réfléchit très bien IR: r = 1 – a = 0,98	0,25	0,02	12,5
acier poli absorbe bien le visible a* = 0,63 réfléchit bien IR: r = 1 - a = 0,91	0,63	0,09	7
aluminium anodisé	0,80	0,14	5,71
nickel brillant	0,34	0,07	4,86
aluminium poli absorbe très peu le visible r [*] = $1 - \epsilon^* = 0,90$ réfléchit beaucoup IR: r = $1 - a = 0,96$	0,10	0,04	2,5
peinture noire (silicate) absorbe bien le visible a* = 0,97 réfléchit peu IR: r = 1 - a = 0,12	0,97	0,88	1,10
peinture aluminium	0,26	0,26	1
acier sablé	0,75	0,80	0,94
peinture blanche (silicate) absorbe peu le visible a* = 0,14 réfléchit peu IR: r = 1 - a = 0,10	0,14	0,90	0,16

Le **tableau A1.1** donne la sélectivité de quelques matériaux et revêtements:

tableau A1.1 – sélectivité de quelques revêtements

A1.4 – Rôle et importance de la couverture transparente (vitrage), effet de serre

Intérêt d'une couverture transparente pour le convertisseur thermo-solaire:

- Améliorer le rendement du capteur par effet de serre (d'autant plus intéressant que la température dans le fluide caloporteur doit être élevée).
- Éliminer les effets de convection forcée (vent...) due à l'air extérieur.

Il nous faut donc, d'une part, montrer comment la couverture transparente transmet à la cavité le rayonnement solaire, ce qui se ramène à étudier le facteur de transmission optique d'une lame transparente, et d'autre part, décrire l'effet de serre dans la cavité produit par les échanges thermiques en présence de la lame transparente.

A1.4.1 – Facteur de transmission optique d'une lame transparente (figure A1.6)

figure A1.6 – transmission radiative thermique entre une lame transparente et l'absorbeur

Le facteur de transmission optique décrit la transmission et la réflexion du rayonnement visible par effet de réfraction optique au niveau du dioptre vitre/air (due au fait que la vitesse de la lumière change à cet interface), et non due à l'absorption ou à la réflexion du rayonnement thermique intrinsèque au matériau (donc, ne pas confondre!).

Cet effet se produit donc même si la couverture est totalement transparente (du point de vue radiatif), donc de grande émissivité (proche de 1).

A chaque rencontre du dioptre le rayon se réfléchit partiellement dans le milieu (la cavité) et l'autre partie sort vers l'extérieur (l'air ambiant). Cette succession de réflexions donne en sortie (dans la cavité) un rayonnement global atténué.

Le rayonnement solaire, transmis par la couverture, et atténué par elle à cause de la succession des réflexions et réfractions multiples qui s'y produisent, est donc affecté d'un *coefficient de transmission* de la couverture τ_c :

$$\varphi_{STC} = \tau_C \varphi_{ST}$$

(l'indice « C » est relatif à la couverture).

Ce rayonnement transmis par la couverture (C) est le rayonnement incident sur la plaque de l'absorbeur (P): celle-ci reçoit donc ϕ_{STC} affecté par l'absorbance de la plaque, c'est-à-dire son émissivité dans le domaine visible et proche IR, ϵ^*_{P} :

$$\varphi_{SP} = \varepsilon^* {}_C \tau_C \varphi_{ST} \quad (A1.29)$$

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 50/111

(l'indice « P » est relatif à la plaque de l'absorbeur, figure A1.7).

figure A1.7 – flux thermique incident sur la plaque de l'absorbeur

Il faut donc déterminer τ_c pour la couverture.

Le flux qui traverse la couverture résulte des effets de l'absorption optique (réfraction) dans le milieu et des effets de réflexion au niveau du dioptre air/vitre appliqués au rayonnement absorbé. On a donc:

 $\tau_C = \tau_{aC} \tau_{rC}$ (A1.30)

où τ_{rc} : proportion du rayonnement incident réfléchi au niveau du dioptre air/vitre; τ_{ac} : proportion du rayonnement incident absorbé dans la vitre après traversée du dioptre ou réflexion (**figure A1.8**).

figure A1.8 – réflexions et réfractions multiples dans la couverture transparente

Calcul de T_{rC}:

- à la première rencontre du dioptre (1)/(2) le faisceau:
 - * réfléchi vers l'air extérieur est: $\rho \phi_{ST}$ (ρ : coefficient de réflexion optique)
 - * réfracté dans le milieu (2) puis transmis vers l'air intérieur est: $(1-\rho^2)\phi_{ST}$
- à la 2e rencontre du dioptre (1)/(2) le faisceau réfléchi dans le milieu (2) est transmis vers l'air extérieur: (1-ρ²)ρφ_{ST}
- à la 3e rencontre du dioptre (2)/(1) côté air intérieur, le faisceau réfléchi dans le milieu (2) est transmis vers l'air extérieur: $(1-\rho^2)\rho^2\phi_{ST}$

Et ainsi de suite à l'infini.

Le coefficient de transmission du rayonnement incident entre l'air extérieur et l'air intérieur due aux réflexions multiples dans le milieu (2) est donc:

$$\tau_{rC} = (1 - \rho^2) + (1 - \rho^2)\rho^2 + (1 - \rho^2)\rho^4 + \dots = (1 - \rho^2)\sum_{n=0}^{\infty} \rho^{2n}$$

Comme ρ < 1 cette série est convergente et on trouve:

$$\tau_{rC} = \frac{1-\rho}{1+\rho} \quad (A1.31)$$

Il reste à déterminer ρ (figure A1.9):

figure A1.9 - réfraction dans un dioptre

A chaque rencontre du dioptre (1)/(2), ρ est le même. La loi de Descartes-Snell donne:

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

On montre en optique que p est donné par la *formule de Fresnel*:

$$\rho = \frac{1}{2} \left[\frac{\sin^{2}(\theta_{2} - \theta_{1})}{\sin^{2}(\theta_{2} + \theta_{1})} + \frac{\tan^{2}(\theta_{2} - \theta_{1})}{\tan^{2}(\theta_{2} + \theta_{1})} \right]$$
(A1.32)

donc T_{rC} dépend de l'angle d'incidence du rayonnement.

Si le milieu (1) est l'air, n₁ = 1, d'où, en posant n = n₂: $\theta_2 = \arcsin\left(\frac{1}{n}\sin\theta_1\right)$ que l'on remplace dans la

formule de Fresnel (A1.32).

Le cas particulier d'une incidence normale ($\theta_1 = 0$) donne:

$$\rho_{\text{normal}} = \left(\frac{n-1}{n+1}\right)^2 \quad (A1.33)$$

Remarque importante: si plusieurs lames transparentes de même matériau constituent la couverture (N lames parallèles séparées par une couche d'air) (**figure A1.10**), on montre que:

$$\tau_{rC} = \frac{1-\rho}{1+(2N-1)\rho}$$
 (A1.34)

Donc, le *double vitrage* (ou le multi-vitrage), s'il avantage l'isolation thermique, entraîne cependant une atténuation optique plus importante du rayonnement incident que le simple vitrage (l'intensité de la lumière est plus faible par les multiples réflexions).

Calcul de T_{aC}:

$$\tau_{aC} = \exp\left(-k_e r\right) \quad (A1.35)$$

avec:

k_e : indice d'extinction (unité: m⁻¹)

r: distance parcourue par la lumière dans le matériau.

On rappelle que ces propriétés de transmissions optiques doivent être distinguées des propriétés de transfert radiatif: ces dernières sont liées aux agitations thermiques quantiques dans les matériaux, pour tous domaines du spectre, tandis que les premières sont propres aux transmissions du spectre visible et correspondent aux transitions et absorptions électroniques en réponse aux ondes électromagnétiques du domaine visible (et proche IR).

Finalement:

$$\tau_C = \frac{1-\rho}{1+(2N-1)\rho} \exp(-k_e r)$$
 (A1.36)

où ρ est donné par la formule de Fresnel (A1.32). L'allure des courbes $\tau_c = f(\theta_1)$ est représentée en **figure A1.11**.

figure A1.11 – coefficient de transmission optique pour des lames transparentes en verre

matériau	nom commercial	épaisseur (mm)	Τc	masse volumique (kg/m³)	capacité calorifique C (J/kg/K)	conductivité thermique λ (W/m/K)	dilatation thermique α (10⁵ K⁻¹)
verre à vitre		3	0,85-0,92	2700	840	0,93	0,9
polycarbonate	Makrolon, Lexan	3,2	0,82-0,89	1200	1260	0,2	6,6
polyméthacrylate	Plexiglas	3,2	0,89-0,92	1200	1460	0,2	7
polyester armé		1	0,77-0,90	1400	1050	0,21	3,5
polytéréphtalate d'éthylène	Mylar, Therphane	0,025	0,84	1,38	1170	0,25	7
polyfluroéthylène propylène	Teflon	0,05	0,97	2,15	1170	0,25	10
polyfluorure vinyle	Tedlar	0,1	0,93	1,50	1380	0,12	4

tableau A1.2 – coefficient de transmission optique en incidence normale et quelques propriétés thermiques de matériaux partiellement ou totalement transparents

Exemple: - Double vitrage en verre de vitre, épaisseur 3mm chacune, indice de réfraction optique n = 1,5 et indice d'extinction $k_e = 0,2$ cm⁻¹. Calculer τ_c pour les deux angles d'incidence: $\theta_1 = 0^\circ$ (incidence normale) et $\theta_1 = 60^\circ$. Solution:

N = 2

a) incidence normale $\theta_1 = 0^\circ$:

Pour τ_{aC} , attention: la distance parcourue r est 2 fois l'épaisseur de la vitre: r = 2 x 3 mm. (A1.35) $\rightarrow \tau_{aC}$ = exp (-k_e r) = exp (-0,2 x 2 x 0,3) = 0,887 L'incidence étant normale on emploie (A1.33) $\rightarrow \rho = ((n-1)/(n+1))^2 = ((1,5-1)/(1,5+1))^2 = 0,04$ Pour τ_{rC} , (A1.34) donne: $\tau_{rC} = (1-\rho)/(1+(2N-1)\rho) = (1-0,04)/(1+(2x2-1)x0,04) = 0,86$ (A1.30) $\rightarrow \tau_C = \tau_{aC} \tau_{rC} = 0,887 \times 0,86 = 0,76$ b) incidence $\theta_1 = 60^\circ$:

Attention: pour τ_{aC} , la distance r parcourue dans le verre est celle du rayon réfracté de l'angle θ_2 (**figure A1.12**):

Remarque importante: - Réflexion entre la plaque de l'absorbeur (P) et la couverture (C) (**figure A1.13**):

figure A1.13 – réflexions entre la couverture (C) et la plaque de l'absorbeur (P)

Les flux réfléchis multiplement sur la couverture et sur la plaque sont reçus sur la plaque affectés par autant de fois la réflectance de la plaque dans le domaine visible $(1 - \epsilon^*_{P})$.

Le flux transmis par la couverture $\tau_C \phi_{ST}$ est absorbé partiellement par la plaque selon $\epsilon^*_P \tau_C \phi_{ST}$, et la partie réfléchie $(1-\epsilon^*_P)\tau_C \phi_{ST}$ se redirige vers la couverture où elle subit une réflexion partielle:

 $(1-\epsilon^*_P)\tau_C\phi_{ST}\rho_C$ (où ρ_C est le coefficient de réflexion optique de la couverture auparavant noté ρ).

Ce flux réfléchi est absorbé par la plaque partiellement selon $\epsilon^*_P(1-\epsilon^*_P)\tau_C\phi_{ST}\rho_C$.

Et ainsi de suite à l'infini: le flux global reçu par la plaque est alors:

$$\varphi_P = \varepsilon *_P \left(\sum_{n=1}^{\infty} (1 - \varepsilon *_P)^n \rho_C^n \right) \tau_C \varphi_{ST} = \varepsilon *_{P,e} \tau_C \varphi_{ST}$$

où l'on a introduit l'absorptance effective de la plaque:

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 54/111

$$\epsilon_{P,e}^{*} = \epsilon_{P,e}^{*} \sum_{n=1}^{\infty} (1 - \epsilon_{P}^{*})^{n} \rho_{C}^{n}$$

le calcul de la série (qui est convergente puisque ses termes sont < 1) donne:

$$\epsilon *_{P,e} = \frac{\epsilon *_{P}}{1 - (1 - \epsilon *_{P})\rho_{C}} \quad (A1.37)$$

Le flux reçu par la plaque est finalement:

$$\varphi_P = \varepsilon^*_{P,e} \tau_C \varphi_{ST} \quad (A1.38)$$

Mais dans la pratique, pour les plaques ayant un ϵ^*_P proche de 1 et une couverture de réflectivité ρ_c assez faible, $\epsilon^*_{P,e}$ est très proche de ϵ^*_P :

Par exemple: $\epsilon^*_P = 0,9$ et $\rho_C = 0,2 \rightarrow \epsilon^*_{P,e} = 0,92$ donc $\epsilon^*_P \approx \epsilon^*_{P,e}$

Conclusion: dans la pratique, et sous ces conditions, on adoptera $\epsilon_{P}^{*} e_{P,e}^{*}$ et le flux reçu par la plaque de l'absorbeur:

$$\Phi_P \approx \epsilon_P^* \tau_C \Phi_{ST}$$
 (A1.39)

A1.4.2 – Rôle dans l'effet de serre de la couverture transparente aux rayonnements visibles

L'effet de serre dans la cavité du capteur thermosolaire trouve son origine dans la propriété suivante de la couverture optiquement transparente:

- Elle est transparente pour le rayonnement solaire (domaine visible et proche IR): $\lambda < \lambda_c = 2,5 \mu m$
 - (⁵). λ_c est dite « longueur d'onde de coupure » du matériau.
- Elle est opaque pour le rayonnement IR: $\lambda < \lambda_{C}$

Par conséquent: le rayonnement $\lambda < \lambda_c$ traverse la couverture et échauffe la plaque de l'absorbeur.

La plaque, chauffée, ré-émet un rayonnement à plus faible température donc dans le domaine IR ($\lambda < \lambda_c$). Or ce rayonnement IR réémis par la plaque est en grande partie réfléchie par la couverture vers la cavité et la plaque, puisque la couverture est opaque aux rayonnements IR $\lambda > \lambda_c$;

- Le rayonnement IR réfléchi par la couverture arrive sur la plaque et contribue à la chauffer encore plus;
- Et ainsi de suite.

Si la puissance reçue par le capteur solaire, ϕ_{ST} , est stationnaire, un équilibre thermique a lieu: les flux transportés par le rayonnement solaire sont équilibrés par les pertes par rayonnement et par convection avec l'air extérieur. Une température d'équilibre est alors atteinte dans la cavité et sur la plaque, plus élevée qu'en l'absence de couverture transparente aux rayonnements du visible. C'est l'*effet de serre*.

Une couverture constituée d'un double vitrage permet de réduire les pertes thermiques mais, comme on l'a signalé plus haut, transmet moins de rayonnement visible dans la cavité: elle n'améliore donc pas sensiblement l'effet de serre dans la cavité.

La courbe de la **figure A1.14** illustre le principe de l'effet de serre.

Le rayonnement solaire couvre le spectre $\lambda < \lambda_c = 2,5 \ \mu$ m, avec un maximum vers 0,5 μ m, comme vu plus haut.

Un corps noir à la température initiale T = 50°C a son maximum de rayonnement donné par la formule de Wien: $\lambda = 2898/T = 9 \ \mu m$, donc dans le domaine IR, et son spectre de rayonnement démarre à $\lambda > \lambda_c$ donc ne recouvre pas le spectre solaire.

⁵ Bien sûr, le spectre visible ne commence pas à $\lambda = 0$! Le domaine des très courtes longueurs d'onde (en-deçà du domaine UV, gamme et X) ne correspond pas au visible, mais il est inclus dans le spectre du rayonnement solaire avec des puissances très faibles devant celles du visible; aussi son rôle est négligeable dans l'effet de serre.

Le coefficient de transmission optique τ_c de la couverture (⁶) dépend lui aussi de la longueur d'onde (par exemple, par l'intermédiaire de l'indice d'extinction $k_e(\lambda)$): il est maximal et pratiquement constant pour le domaine visible et proche IR, $\lambda < \lambda_c$, et pratiquement nul dans l'IR, $\lambda > \lambda_c$. Ainsi la couverture laisse passer 84% du rayonnement solaire (qui se répartit en 48% visible et 36% proche IR) comme c'est le cas du verre d'épaisseur e = 3 mm, constitué de 2%Fe₂O₃.

figure A1.14 – principe de l'effet de serre

L'énergie rayonnée par la plaque à 50°C, donc dans l'IR, est bloquée par la couverture et renvoyée vers la plaque. La plaque s'échauffe alors T > 50°C et rayonne donc avec une longueur d'onde plus petite que la précédente: $\lambda < 9 \mu m$. Par exemple, si elle passe à 89°C on a $\lambda = 8 \mu m$, mais le rayonnement reste toujours dans le domaine IR. La courbe d'émittance de la plaque se décale vers les longueurs d'onde plus petites. Et ainsi de suite jusqu'à obtenir un équilibre thermique entre le flux solaire et les pertes.

Exemple: - Dans un capteur solaire plan:

- plaque de l'absorbeur: en cuivre recouverte d'une peinture noire (ε*_P = 0,97 dans le visible et proche IR, ε_P = 0,88 dans l'IR);
- couverture transparente: vitre isotherme à la température T_c, de facteur de transmission solaire
 τ_c = 0,75 pour λ < λ_c et une émissivité dans l'IR: ε_c = 0,83. La face arrière du capteur est parfaitement isolée thermiquement.
- La plaque échange de l'énergie thermique avec le fluide caloporteur (puissance utile φ_u = 410 W/m²);
- La vitre échange avec l'air extérieur, par convection: négligée ici;
- La plaque échange avec la vitre par convection naturelle dans la cavité: h_{CN} = 3,2 W/m²/K et par rayonnement thermique.
- Température extérieure: T_e = -10°C, température de l'air intérieur T_a = 10°C;
- Flux solaire total incident sur la vitre φ_{ST} = 720 W/m².

Trouver la température d'équilibre T de la plaque:

- a) sans tenir compte de l'effet de serre (pas de vitre);
- b) avec effet de serre (vitre installée).

SOLUTION:

a) – Sans effet de serre:

- Puissance solaire absorbée directement par la plaque:

 $\Phi_P = \epsilon *_P \Phi_{ST}$ puisque $\tau_C = 1$

- Puissance perdue par rayonnement avec l'air à Te, et par convection:

⁶ Encore une fois, ne pas confondre le coefficient de transmission optique τ_c avec l'absorptivité qui est aussi l'émissivité ϵ_c ! La couverture peut avoir un τ_c élevé dans le visible et faible dans l'IR et une ϵ_c élevée dans l'IR.

$$\varphi_{Pe} = \varepsilon_P \sigma \left(T^4 - T_e^4 \right) + h_{CP} \left(T - T_e \right)$$

- Puissance émise vers le fluide: Φ_u
- Bilan énergétique:

$$\Phi_R = \Phi_r - \Phi_i$$
 où: $\Phi_i = \Phi_P$ et $\Phi_r = \Phi_{Pe} + \Phi_u$

Équilibre $\Phi_R = 0 \rightarrow \epsilon *_P \Phi_{ST} = \epsilon_P \sigma (T^4 - T_e^4) + h_{CP} (T - T_e) + \Phi_u$ On se place dans l'approximation linéaire de la loi de Stefan-Boltzmann:

$$\epsilon_P \sigma (T^4 - T_e^4) \approx h_{RP} (T - T_e)$$
 avec: $h_{RP} = 4 \sigma T_e^3$

d'où l'on tire la température d'équilibre:

$$T \approx T_e + \frac{\varepsilon_P^* \varphi_{ST} - \varphi_u}{h_{RP} + h_{CP}}$$
 (A1.40)

Avec les données de l'énoncé:

$$T = 263 + \frac{0.97 \times 720 - 410}{4 \times 5.67.10^{-8} \times 263^{3} + 13} = 280 \, K = 7 \,^{\circ}C$$

b) Avec effet de serre:

- Puissance solaire absorbée par la plaque via la vitre: $\Phi_P = \epsilon^*_P \tau_C \Phi_{ST}$
- Puissance échangée par rayonnement avec la vitre: d'après (A1.26)

$$\varphi_{PCR} = \frac{\sigma \left(T^4 - T_C^4\right)}{\frac{1}{\varepsilon_P} + \frac{1}{\varepsilon_C} - 1}$$

- Puissance échangée par convection naturelle avec la vitre: $\Phi_{PCN} = h_{CN} (T T_C)$
- Donc puissance totale échangée entre la plaque et la vitre: $\Phi_{PC} = \Phi_{PCR} + \Phi_{PCN}$
- Puissance transmise par la plaque au fluide: Φ_u
- Bilan énergétique pour la plaque: $\Phi_{RP} = \Phi_{rP} \Phi_{iP}$ avec: $\Phi_{rP} = \Phi_{PC} + \Phi_u$, $\Phi_{iP} = \Phi_P$

$$\begin{array}{ll} \text{équilibre thermique:} & \Phi_{RP} = \Phi_{PCR} + \Phi_{PCN} + \Phi_u - \Phi_P = 0 & \rightarrow \\ & & \frac{\sigma \left(T^4 - T_C^4\right)}{\frac{1}{\epsilon_P} + \frac{1}{\epsilon_C} - 1} + h_{CN} (T - T_C) + \Phi_u = \epsilon^*{}_P \tau_C \Phi_{ST} \quad (A1.41) \end{array}$$

qui est une équation d'inconnue T; mais la température de la vitre T_c n'est pas non plus connue, il faut donc écrire le bilan énergétique aussi pour la vitre:

- Échange vitre/air extérieur par convection: $\Phi_{CeC} = 0$
- Échange vitre/air intérieur par convection: $\Phi_{CaC} = h_{CC} (T_C T_a)$
- Échange radiatif vitre/air extérieur: $\Phi_{CeR} = \epsilon_C \sigma (T_C^4 T_e^4)$
- Puissance absorbée par la vitre issue de la plaque (puissance échangée entre la plaque et la vitre):
 Φ_C=Φ_{PC}

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 57/111

- Bilan énergétique de la vitre: $\Phi_{RC} = \Phi_{rC} - \Phi_{iC}$ avec $\Phi_{rC} = \Phi_{CeC} + \Phi_{CaC} + \Phi_{CeR}$ et $\varphi_{iC} = \varphi_{C} = \varphi_{PC}$

- Équilibre thermique de la vitre: $\Phi_{RC} = \Phi_{CeC} + \Phi_{CaC} + \Phi_{CeR} - \Phi_{iC} = 0 \rightarrow$

$$h_{CC}(T_C - T_a) + \epsilon_C \sigma (T_C^4 - T_e^4) = \frac{\sigma (T^4 - T_C^4)}{\frac{1}{\epsilon_P} + \frac{1}{\epsilon_C} - 1} + h_{CN}(T - T_C)$$
(A1.42)

On a donc deux équations (A1.41) et (A1.42) à deux inconnues T, T_c. En linéarisant les équations de Stefan-Boltzmann on obtient finalement:

température de la vitre:
$$T_{C} = \frac{\varepsilon^{*}{}_{P}\tau_{C}\phi_{ST}-\phi_{u}+h_{CC}T_{a}+4\varepsilon_{C}\sigma T_{e}^{4}}{h_{CC}+4\varepsilon_{C}\sigma T_{e}^{3}}$$
(A1.43)
température de la plaque:
$$T = T_{C} + \frac{\varepsilon^{*}{}_{P}\tau_{C}\phi_{ST}-\phi_{u}}{4\sigma T_{C}^{3}} + h_{CN}$$
(A1.44)

température de la plaque:

$$T_{C} = \frac{0.97 \times 0.75 \times 720 - 410 + 13 \times 283 + 4 \times 0.83 \times 5.67.10^{-8} \times 263^{4}}{13 + 4 \times 0.83 \times 5.67.10^{-8} \times 263^{3}} = 286 \, K = 13 \,^{\circ}C$$

$$T = 286 + \frac{0.97 \times 0.75 \times 720 - 410}{\frac{4 \times 5.67.10^{-8} \times 286^{3}}{10.88} + 3.2} = 302 \, K = 29 \,^{\circ}C$$

Conclusion: sans effet de serre la plaque est à 7°C, avec effet de serre elle est à 29°C.

NB: La couche d'air entre la vitre et la plaque de l'absorbeur ne doit pas être trop épaisse pour éviter les pertes par convection entre la plaque et l'air intérieur de la cavité. Un bon ordre de grandeur en pratique est une épaisseur de la cavité n'excédant pas 5 cm.

A1.5 – Deux cas de figure quotidiens d'application du transfert par rayonnement thermique

A1.5.1 – La voiture exposée au Soleil

Le rôle de l'émissivité de la peinture d'une carrosserie de voiture est important. Voici au tableau A1.3, quelques valeurs de ε pour certaines peintures (valeurs dans le spectre du visible):

peinture	émissivité en rayonnement solaire ε
argent poli	0,07
blanc mat	0,25
crème	0,35
jaune	0,45
vert	0,50
gris	0,75
noir mat	0,97

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 58/111

Question: quelle est la température intérieure T_2 dans une voiture noire ou blanche laissée en plain soleil l'été, alors que la température T_1 de l'air ambiant est 30°C (**figure A1.15**)?

figure A1.15 – bilan thermique sur une voiture exposée au rayonnement solaire

Flux incident sur la voiture: Φ_{i2} = rayonnement solaire + rayonnement de l'air ambiant, soit:

$$\varphi_{i2} = \varepsilon_2 \varphi_S + \varepsilon_1 \varphi_1$$

φs n'est pas égal à 1000 W/m² à cause de l'humidité de l'air, mais est égal à 700 W/m²

 $\phi_1 = \sigma (T_1 - 12)^4$ d'après les mesures (et non σT_1^4)

$$\rightarrow \phi_{i2} = \epsilon_2 \phi_S + \epsilon_1 \sigma (T_1 - 12)^2$$

Voiture noire: $\epsilon_2 \approx 1$

Voiture blanche: $\epsilon_2 \approx 0,25$

et pour l'air: $\epsilon_1 = 0,9$

Flux réémis par la voiture vers le milieu extérieur: la surface chauffée à la température T₂ réfléchit la puissance ϕ_{i2} par rayonnement (ϕ_2) et par convection (ϕ_{C2}) de l'air ambiant au contact de la paroi:

$$\varphi_2 = \varepsilon_1 \sigma T_2^4$$

convection: pour une vitesse du vent nulle on montre que sur une paroi plane: $\phi_{C2} = 2.4 (T_2 - T_1)^{5/4}$ En fait, ϕ C2 doit être multiplié par le ratio x:

 $x = \frac{\text{surface réémettrice par convection}}{\text{surface recevant le flux incident}}$

Pour une voiture $x \approx 2$: la surface de refroidissement par convection est à peu près le double de la surface du toit qui reçoit directement le flux solaire. Donc:

$$\varphi_{r2} = \varphi_2 + x \varphi_{C2} = \varepsilon_1 \sigma T_2^4 + 2 \times 2, 4(T_2 - T_1)^{5/4}$$

Équilibre thermique $\Phi_{R2} = 0 = \Phi_{r2} - \Phi_{i2} \rightarrow \Phi_2 \Phi_S + \epsilon_1 \sigma (T_1 - 12)^4 = \epsilon_1 \sigma T_2^4 + 2 \times 2,4 (T_2 - T_1)^{5/4}$ Tout calcul fait on obtient: Voiture noire: $T_2 = 65^{\circ}$ C Voiture blanche: $T_2 = 40^{\circ}$ C.

A1.5.2 – Sensation de froid près d'une fenêtre

Soit une personne, à la température corporelle externe $T_2 = 36^{\circ}C$, située dans une pièce fermée de température intérieure $T_1 = 19^{\circ}C$, et placée à proximité d'une fenêtre de température $T_1 = 11^{\circ}C$ (**figure A1.16**). Cette personne se plaindra d'une sensation de froid alors que les autres résidents, situés loin de la fenêtre, prétendront être à une température confortable. Pourquoi?

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 59/111

La réponse passe par l'examen du bilan thermique au niveau de cette personne, impliquant le transfert par rayonnement et les échanges convectifs.

figure A1.16 – échanges thermiques pour une personne à proximité d'une fenêtre

L'émissivité de la peau d'une personne est $\varepsilon_2 = 0.9$. Flux incident reçu par la personne (2) issu de la fenêtre (1):

$$\Phi_1 = \epsilon_2 \sigma T_1^4 = 0.9 \times 5.67 \times \left(\frac{273 + 11}{100}\right)^4 = 332 W/m^2$$

Flux incident reçu par la personne (2) issu de l'intérieur (i):

$$\varphi_i = \varepsilon_2 \sigma T_i^4 = 0.9 \times 5.67 \times \left(\frac{273 + 19}{100}\right)^4 = 371 W/m^2$$

Flux émis par la personne (2) par convection vers l'intérieur (i) (h_{C2} = 4,9 W/m²/K):

$$\Phi_{C2} = h_{C2}(T_2 - T_i) = 4,9 \times (36 - 19) = 83 W / m^2$$

Flux émis par la personne (2) par rayonnement vers l'intérieur (i):

$$\varphi_2 = \varepsilon_2 \sigma T_2^4 = 0.9 \times 5.67 \times \left(\frac{36 + 273}{100}\right)^4 = 465 W/m^2$$

La partie du corps de (2) exposée à la fenêtre a une perte thermique:

 $\Delta \phi_1 =$ flux émis par (2)-flux reçu de la fenêtre $= \phi_{C2} + \phi_2 - \phi_1 = 83 + 465 - 332 = 216 W/m^2$

La partie du corps de (2) exposée vers l'intérieur a une perte thermique:

$$\Delta \phi_i = \text{flux \acute{e}mis par (2)} - \text{flux issu de (i)} = \phi_{C2} + \phi_2 - \phi_i = 83 + 465 - 371 = 177 W/m^2$$

La personne (2) perd plus de chaleur vers la fenêtre que vers l'intérieur, la différence est responsable de la sensation de froid près de la fenêtre:

$$\Delta \phi_1 - \Delta \phi_i = 216 - 177 = 39 W/m^2$$

La surface corporelle moyenne d'une personne adulte est de l'ordre de 1,6 m². En admettant que le dos

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 60/111

et la face avant représentent chacun la moitié de cette surface, soit 0,8 m², la puissance correspondant à la différence des pertes thermiques est 39 x 0,8 = 31,2 W. Au bout d'une heure, près de la fenêtre, la personne aura donc perdu une énergie de l'ordre de 31,2 x 3600 s = 112320 joules, soit l'équivalent d'une ampoule de 30 watts allumée pendant une heure.

A2 – TRANSFERT THERMIQUE PAR CONVECTION

A2.1 – Phénomène convectif

Soit un fluide au contact d'une paroi portée à une certaine température; le fluide est animé d'une vitesse quelle que soit la cause qui la produit (elle peut être imposée, comme en régime de convection forcée, ou bien résulter des échanges thermiques entre la paroi et le fluide, comme en régime de convection naturelle). Dès lors que le fluide est en mouvement, le transfert thermique est dit transfert par convection thermique.

Convection thermique: le transport macroscopique (en volume) de matière a pour effet de transporter aussi les propriétés volumiques de cette matière: masse, charge électrique, énergie, quantité de mouvement...

Cela se produit donc uniquement dans un fluide (gaz, liquide); la puissance véhiculée traversant une surface dans le fluide est le flux d'une densité de courant de convection à travers cette surface:

$$\Phi = \iint_{S} \vec{j}_{Q} \cdot \vec{n} \, dS = \iint_{S} \Phi \, dS \quad \text{(unité: W)}$$

 $\vec{j}_{0} = \rho h \vec{V}$ (A2.1)

où:

avec:
$$\rho$$
 masse volumique du fluide, \vec{V} vitesse d'écoulement, h enthalpie massique (en J/kg); j_Q est le vecteur courant de convection en W/m², et φ puissance transmise par unité de surface (en W/m² également). Ainsi:

$$\Phi = \iint_{S} \rho h \vec{V} \cdot \vec{n} \, dS \quad (A2.2)$$

Or si H est l'enthalpie totale on a, pour une masse élémentaire dm du fluide: $h = \frac{dH}{dm}$

Soient deux zones du fluide à la température T1 et T2; l'enthalpie échangée entre elles est:

$$H = mc_P(T_1 - T_2) \rightarrow h = c_P(T_1 - T_2)$$

où c_P chaleur massique à pression constante du fluide. Si S est uniforme et \vec{V} constante alors (A1.46) prend la forme approchée:

$$\Phi \approx \rho c_P V S (T_1 - T_2) \quad (A2.3)$$

qui suit l'approximation linéaire des transferts thermiques $~~\Phi^{\,\infty}(T_{\,1}-T_{\,2})$

Remarque importante: en fait, en partie, le transfert thermique s'effectue à travers la couche limite du fluide tout proche de la paroi solide (**figure A2.1**):

Entre le solide et le fluide, à la paroi, le transfert se fait par conduction thermique (cf. Annexe 3).

La température décroît de T₁ entre la paroi y = 0 et T₂ à la zone d'écoulement non visqueux (écoulement dit potentiel) y = δ , où δ est l'épaisseur de la couche limite; dans cette zone d'écoulement potentiel la température T₂ est uniforme.

Entre la paroi (y = 0) et l'écoulement potentiel, donc à travers l'épaisseur de la couche limite (y = δ), le transfert s'effectue également par conduction thermique, mais cette fois dans un milieu fluide; le courant de diffusion qui véhicule cette part de transfert thermique dans la couche limite, noté j_{QCL}, est alors:

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 61/111

$$j_{QCL} = -\lambda_F \left(\frac{\partial T}{\partial y}\right)_{y=\delta} = -\lambda_F \frac{T_2 - T_1}{\delta}$$

avec λ_F conductivité thermique du fluide, donc:

avec:

$$h_{CL} = \frac{\lambda_F}{\delta} \quad (A2.5)$$

$$h_{CL} = \frac{\lambda_F}{\delta} \quad (A2.5)$$

qui est le coefficient de transfert à travers la couche limite, il dépend uniquement du fluide (viscosité, vitesse d'écoulement) et de l'état de surface de la paroi (rugosité...); il est exprimé en W/m²/K.

figure A2.1 – transfert thermique dans une couche limite, entre la paroi et l'écoulement potentiel

Le transfert thermique de la paroi au fluide conditionne directement le transfert thermique dans le cas de la *convection forcée* (le fluide est animé d'une vitesse imposée de l'extérieur: pompe, canalisation inclinée, etc), et apporte la source de chaleur au fluide qui sera responsable de la variation de densité de celui-ci (*convection naturelle*: la vitesse du fluide résulte du gradient de densité créé par la source de chaleur pariétale).

En convection forcée, comme l'épaisseur de la couche limite et sa conductivité dépendent de manière compliquée de la vitesse de l'écoulement et de la géométrie, l'expression (A2.5) de h_{CL} fait intervenir la géométrie de l'écoulement et sa vitesse, selon différents régimes d'écoulement (laminaire, turbulent).

En convection naturelle, à la source de chaleur transmise par la paroi au fluide, s'ajoutent les transferts dus aux mouvements du fluide sous l'action du gradient de densité, donc de température, en ce fluide. le coefficient de transfert thermique s'exprime par des relations compliquées, et fonction du régime, avec les températures, la conductivité thermique du fluide, sa géométrie...

A2.2 – Coefficients de transfert en convection forcée et en convection naturelle

A2.2.1 – Convection forcée

La convection est qualifiée de **forcée** lorsque le fluide est en écoulement sous l'action de forces imposées par l'extérieur (pompe, conduite forcée, etc.). Soit V sa vitesse moyenne d'écoulement, « d » la dimension caractéristique de la zone où s'effectue l'écoulement (par exemple, « d » est le diamètre d'une conduite).

Entre la paroi P et un point F du fluide, la puissance véhiculée est $\Phi_C = h_C (T_P - T_F)$ où h_c dépend de divers paramètres:

- nombre de Reynolds: $Re = \frac{Vd}{v}$, où $v = \mu/\rho$ est la viscosité cinématique (en m²/s), μ

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 62/111

viscosité dynamique (en kg/m/s), ρ masse volumique du fluide. Le nombre de Reynolds évalue l'importance relative des forces d'inertie et des forces de viscosité. L'écoulement est laminaire si Re < 2000, et pleinement turbulent pour Re > 3000.

- **nombre de Prandtl**: $Pr = \frac{\mu c_F}{\lambda_F}$ où c_F chaleur massique du fluide; le nombre de Prandtl évalue

la capacité du fluide à s'échauffer par rapport à la conduction thermique: c'est une caractéristique propre du fluide, indépendante de l'écoulement, donc de V.

- **nombre de Nusselt**: $Nu = \frac{h_C d}{\lambda_F}$; il évalue l'importance relative de la convection (forcée ou

naturelle) et de la conduction thermique.

On montre, en convection forcée, que: Nu = f (Re, Pr), ou encore $h_C = \frac{\Lambda_F}{d} f(Re, Pr)$, cette relation prenant des formes différentes selon que l'écoulement soit turbulent ou laminaire:

- **écoulement turbulent** dans une conduite de diamètre D (d = D), où le fluide est aussi bien un gaz qu'un liquide: $h_C = \frac{\lambda_F}{D} \times 0.023 (Re)^{0.8} (Pr)^{0.4}$ (A2.6)

NB: pour les gaz: $Pr \approx 1$ donc (A2.6) devient: $h_C \approx \frac{\lambda_F}{D} \times 0.023 (Re)^{0.8}$

- écoulement laminaire dans une conduite de diamètre D (d = D), pour un liquide ou un gaz, la couche limite étant supposée pleinement développée:
 - si le flux d'énergie à travers la paroi est constant: $h_C = 4,36 \frac{\Lambda_F}{D}$ (A2.6a) (donc Nu = f(Re,Pr) = 4,36)
 - si la température est constante à la paroi: $h_C = 3,66 \frac{\lambda_F}{D}$ (A2.6b)
- (donc Nu = f(Re,Pr) = 3,66) – Écoulement laminaire ou turbulent de l'air perpendiculaire à une barre cylindrique chauffée de diamètre D: $h_C = A \frac{\lambda_F}{D} Re^S$ (donc Nu = f(Re,Pr) = A.Re^s) où A et S dépendent du nombre de

Reynolds Re (tableau A2.1):

Re	А	S
< 4	0,891	1/3
4-40	0,821	0,385
40-4000	0,615	0,466
4000-40000	0,174	0,618
> 40000	0,0239	0,805

tableau A2.1 – coefficient et exposant intervenant dans l'expression du transfert thermique par convection forcée entre une barre cylindrique chauffée et l'air en écoulement

- Écoulement turbulent de l'air entre deux plaques parallèles distantes de L: $h_C = 2.6 \frac{V^{0.8}}{r^{0.2}}$
- Écoulement laminaire de l'air sur une plaque plane, V étant la composante de la vitesse parallèle à la plaque:

$$h_C = 5,7+3,8V$$
 (A2.7)

A2.2.2 – Convection naturelle

La convection est qualifiée de *naturelle* lorsque le mouvement du fluide, au contact d'une surface solide chauffée, a pour moteur l'échauffement: celui-ci a pour effet de modifier la densité du fluide et, par conséquent, les forces de gravité dans le fluide.

Soit une paroi verticale, de hauteur H, à la température T_P , au contact d'un fluide à la température initiale T_F . En s'échauffant au contact de la paroi, $T_F \rightarrow T_P$, les particules fluides subissent un changement de volume par dilatation thermique: $V^*_F \rightarrow V^* = V^*_F (1 + \alpha (T_P - T_F))$, où α est le coefficient de dilatation du fluide (pour un gaz parfait $\alpha = 1/T_m$, où $T_m = (T_P + T_F)/2$ température moyenne dans le fluide au voisinage de la paroi), et donc sa masse volumique change aussi⁷:

$$\rho_F = \frac{m}{V_F^*} \to \rho = \frac{m}{V_F^*} = \frac{m}{V_F^*} \frac{1}{1 + \alpha (T_P - T_F)}$$

pour des températures relativement proches, on a l'expression approchée:

$$\rho \approx \rho_F (1 - \alpha (T_P - T_F)) < \rho_F$$

si T_P > T_F: le fluide devient moins dense par échauffement. Il s'ensuit qu'une force ascensionnelle apparaît par poussée d'Archimède: les particules de fluide plus chaudes subissent de la part des particules du fluide environnant encore à la température T_F une poussée d'Archimède dans un domaine de même volume initial V_F:

$$F = m g - m' g$$

où m' masse du fluide déplacé: $m' = \rho(T) V_F^* = \rho_F (1 - \alpha (T_P - T_F)) V_F^*$ et m masse du fluide ambiant encore resté froid: $m = \rho_F (T_F) V_F^*$ d'où la poussée:

$$F = \rho_F V_F^* g - \rho_F (1 - \alpha (T_P - T_F)) V_F^* g = \rho \alpha (T_P - T_F) V_F^* g = mg \alpha (T_P - T_F)$$

d'où on définit la force ascensionnelle massique (ou accélération convective):

$$f = \frac{F}{m} = g \alpha (T_P - T_F) \quad (A2.8)$$

Exemple: 1 m³ d'air à la température initiale $T_F = 10^{\circ}C$ (= 283 K) chauffé au contact d'une paroi à la température $T_P = 30^{\circ}C$ (= 303 K) a pour force ascensionnelle massique (avec masse volumique de l'air 1,3 kg/m³ et $\alpha = 1/((283+303)/2) = 3,4.10^{-3}$ K⁻¹): f = 0,72 m/s² et une poussée convective de 0,6 N (l'équivalent d'un poids de 60 grammes).

La puissance thermique transportée par convection, qu'elle soit naturelle ou bien forcée, est:

$$\Phi_C = \frac{dQ}{dt} = \frac{dm}{dt} c_F (T_P - T_F) = \frac{d}{dt} (\rho_F V^*) c_F (T_P - T_F)$$

Supposons que le volume parcouru par le fluide en mouvement ait une section constante de surface S et que la distance parcourue soit z: $V^*(t) = S z(t)$; la vitesse d'écoulement est donc V = dz/dt elle dépend de la température T. La puissance s'écrit alors encore:

$$\Phi_{C} = \rho_{F} S c_{F} V(T_{P} - T_{F}) = h_{C} S (T_{P} - T_{F}) = \phi_{C} S$$

avec donc:

$$\phi_{C} = h_{C}(T_{P} - T_{F})$$

avec: $h_{C} = \rho_{F}c_{F}V(T)$ (A2.9)

⁷ On écrit V* pour les volumes, afin de ne pas les confondre avec la vitesse V.

qui montre là encore, en première approximation, une relation linéaire entre le flux thermique et la différence de températures.

En réalité, le coefficient de transfert h_c n'est pas constant et dépend de la vitesse V.

Dans le cas de la convection naturelle, il dépend donc des températures T_P et T_F , puisque V dépend d'elles; cette dépendance s'exprime généralement par l'intermédiaire du *nombre de Grashof*:

$$Gr = \frac{\alpha g d^3}{v^2} (T_P - T_F)$$
 (A2.10)

(qui est la relation (0.12) vue au chapitre 1). Le nombre de Grashof joue le même rôle que le nombre de Reynolds, où les forces d'inertie sont remplacées par les forces ascensionnelles:

$$Gr = \frac{\text{forces ascensionnelles}}{\text{forces de viscosité}}$$

Il s'ensuit que:

$$h_{C}(T) = \frac{\lambda_{F}}{d} N u = \frac{\lambda_{F}}{d} f(Pr, Gr) \quad (A2.11)$$

qui est la relation (0.11) vue au **chapitre 1**. Cette relation s'explicite dans les cas suivants:

fluide (gaz) entre deux plaques parallèles de températures T₁ et T₂, fermant une cavité, inclinées d'un angle i sur l'horizontale, espacées de d = H (⁸):

$$Gr < 1700 + 47,8 i \rightarrow Nu = 1,013$$

$$1700 + 47,8 i < Gr < 80000 \rightarrow Nu = (0,06 + 3.10^{-4}(90 - i^{\circ})) Gr^{1/3}$$

$$Gr > 80000 \rightarrow Nu = 2,5 + 0,0133(90 - i^{\circ})$$
(A2.12)

– air chauffé par un cylindre horizontal à la température T_P , de diamètre d = D (⁹):

$$10^{3} < Gr \times Pr < 10^{9} \rightarrow h_{C} = 1,30 \left(\frac{T_{P} - T_{F}}{D}\right)^{1/4}$$
(A2.13)
$$10^{9} < Gr \times Pr < 3.10^{12} \rightarrow h_{C} = 1,11 \left(T_{P} - T_{F}\right)^{1/3}$$

NB: Pour un liquide, Pr est très différent de 1, contrairement à un gaz, et l'on a en convection naturelle:

- régime laminaire: $h_C = \frac{\lambda_F}{d} \times 0.56 (PrGr)^{1/4}$ - régime turbulent: $h_C = \frac{\lambda_F}{d} \times 0.17 (PrGr)^{1/3}$

A3 – TRANSFERT PAR CONDUCTION THERMIQUE

A3.1 – Loi de Fourier

Deux corps solides ou liquides en contact, ou deux zones différentes en contact d'un même corps ou liquide à des températures différentes, sont le siège d'un transfert d'énergie sans transport macroscopique de matière; ce transfert s'effectue par propagation de proche en proche de l'agitation thermique des atomes d'un réseau cristallin ou des molécules. C'est le transfert par conduction thermique.

Le transfert a toujours lieu dans le sens des températures décroissantes.

Comme dans le cas général des transferts thermiques, la puissance transmise par conduction thermique

⁸ Dans cette configuration, le nombre de Grashof s'écrit: $Gr = \alpha g H^3(T_2 - T_1)/v^2$ avec $\alpha = 1/T_m = 2/(T_1 + T_2)$.

⁹ Dans cette configuration, le nombre de Grashof s'écrit: Gr = $\alpha g D^3 (T_P - T_F)/v^2$

a pour expression:

$$\Phi = \iint_{S} \varphi \, dS = \iint_{S} \vec{j}_{Q} \cdot \vec{n} \, dS \quad \text{(en W)}$$

où l'on a donc pour le flux surfacique:

$$\varphi = \vec{j}_O \cdot \vec{n}$$
 (en W/m²)

où le vecteur flux surfacique ou densité de courant d'énergie thermique est \vec{j}_Q (en W/m²). Pour la conduction thermique ce courant est donné par la formule de Fourier, établie par l'expérience, mais que les considérations de thermodynamique statistique permettent de démontrer:

$$\vec{j}_{O} = -\lambda \, \overline{\text{grad}} \, T$$
 (A3.1)

où λ est la *conductivité thermique* du milieu (en W/m/K); le signe moins rappelle que le flux de chaleur des zones les plus chaudes vers les zones les plus froides.

Le **tableau A3.1** fournit quelques valeurs de λ . Un matériau thermiquement isolant a un λ faible.

matériau	λ (en W/m/K)	matériau	λ (en W/m/K)
argent	418	laine de verre	0,04
cuivre	390	mousse polyuréthane	0,03
aluminium	238	polystyrène expansé	0,0039
fer	82	béton	1,75
inox	14	brique	1
laiton	120	eau	0,60
verre	1	alcool éthylique	0,17
bois	0,12 à 0,25	huile minérale	0,13
plâtre	0,46	air	0,024

tableau A3.1 – conductivité thermique de quelques matériaux

Au cours du transfert thermique entre deux zones d'un milieu, la distribution de la température varie dans l'espace et dans le temps: $T(\vec{r}, t)$, c'est le champ de température. Il est solution d'une équation différentielle obtenue à partir de la conservation de l'énergie, cette équation est dite **équation de la** *chaleur*:

Théorème (équation de la chaleur): - La distribution de température dans l'espace, et son évolution avec le temps, T (x,y,z,t), est solution de l'équation différentielle:

$$\rho c \frac{\partial T}{\partial t} = \lambda \Delta T \quad (A3.2)$$

où: c chaleur massique du matériau (en J/kg/K), ρ masse volumique, λ conductivité thermique. Δ est l'opérateur laplacien: $\Delta = \partial^2/\partial x^2 + \partial^2/\partial z^2$.

PREUVE de (A3.2): - On propose une « démonstration » fondée sur des considérations physiques de bilan d'énergie, en (a), et une preuve plus mathématique et formelle, en (b): (a) - « Démonstration physique » limitée au modèle 1D suivant une direction Ox (**figure A3.1**):

figure A3.1

Bilan dans le tronçon de longueur dx, délimité par les sections de même surface S:

- flux entrant: $\Phi(x) = j_O(x)S$
- flux sortant: $\Phi(x+d\bar{x}) = j_O(x+dx)S$
- bilan de puissance entre x et x + dx:

$$d\Phi = \Phi(x+dx) - \Phi(x) = -(j_Q(x+dx) - j_Q(x))S \approx -\frac{\partial j_Q}{\partial x}S dx$$

or cette variation de puissance correspond à une variation de quantité de chaleur dans le tronçon:

$$\frac{d}{dt} \left(\delta m \cdot c \left(T - T_0\right)\right)$$

où c est la capacité thermique massique, ou chaleur massique (pour un gaz, c = c_P ou c_V avec $c_P \neq c_V$, mais pour un solide et un liquide cette distinction n'a plus lieu).

Comme
$$\delta m = \rho S dx$$
 on a: $\frac{d}{dt} (\delta m \cdot c (T - T_0)) = \rho S c \frac{\partial T}{\partial t} dx$ et donc:
 $- \frac{\partial j_Q}{\partial x} S dx = \rho S c \frac{\partial T}{\partial t} dx$ soit: $\frac{\partial j_Q}{\partial x} = -\rho c \frac{\partial T}{\partial t}$

Compte tenu de la loi de Fourier en 1D: $j_Q = -\lambda \frac{\partial T}{\partial x}$ on a finalement en 1D:

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c} \frac{\partial^2 T}{\partial x^2}$$

(b) – Démonstration mathématique et formelle:

Le théorème de la divergence donne, pour la puissance:

$$\Phi = \iint_{S} \vec{j}_{Q} \cdot \vec{n} \, dS = \iiint_{V} \operatorname{div} \vec{j}_{Q} \, dV$$

par ailleurs, cette puissance est la dérivée par rapport au temps de l'énergie thermique:

$$\Phi = -\iiint_V c \, d \, m \frac{\partial T}{\partial t} = -\iiint_V \rho \, c \, \frac{\partial T}{\partial t} d \, V \quad \text{puisque dm} = \rho d V$$

Ces deux expressions de Φ donnent donc: $\iiint_V \left(\operatorname{div} \vec{j}_Q + \rho c \frac{\partial T}{\partial t} \right) dV = 0 \text{ pour tout volume V, donc:}$

div
$$\vec{j}_{Q} + \rho c \frac{\partial T}{\partial t} = 0$$
 (A3.3)

L'utilisation de la loi de Fourier: $\vec{j}_Q = -\lambda \overrightarrow{\text{grad}} T$ conduit à, puisque $\operatorname{div} \overrightarrow{\text{grad}} = \Delta$ (laplacien):

©Vincent Élie, Clément Marmion, Frédéric Élie - http://fred.elie.free.fr, janvier 2015 - page 67/111

$$\rho \, c \, \frac{\partial T}{\partial t} = \lambda \Delta \, T$$

CQFD.

Remarque: - L'équation (A3.3) est utile si la conductivité λ n'est ni constante ni uniforme (matériaux hétérogènes): $\lambda = \lambda(x,y,z,t)$; en effet (A3.3) se développe en:

div
$$\vec{j}_Q = -\rho c \frac{\partial T}{\partial t} = \operatorname{div}(-\lambda \operatorname{grad} T) = -\operatorname{grad} \lambda \cdot \operatorname{grad} T - \lambda \Delta T$$

= $-\frac{d\lambda}{dT} \operatorname{grad} T \cdot \operatorname{grad} T - \lambda \Delta T$

et l'équation de la chaleur se généralise en:

$$\rho c \frac{\partial T}{\partial t} = \lambda(T) \Delta T + \frac{d \lambda(T)}{d T} (\overline{\text{grad}} T)^2 \quad (A3.4)$$

En général, λ dépend de T selon une relation de la forme:

$$\lambda(T) = \lambda_0 (1 + \beta (T - T_0))$$

pour les solides: $\beta < 0$ et faible (*un solide chauffé conduit moins la chaleur*).

En présence d'une source de puissance extérieure P_E, le bilan d'énergie doit être complété par elle:

puissance de conduction thermique = puissance d'élévation de la température + puissance extérieure

$$\Phi = \iiint_{V} \operatorname{div} \vec{j}_{Q} dV = -\iiint_{V} \rho c \frac{\partial T}{\partial t} dV + P_{E}$$

Si la puissance extérieure a une densité volumique p_E : $P_E = \iiint_V p_E dV$, l'équation de la chaleur se généralise en:

$$\rho c \frac{\partial T}{\partial t} = \lambda \Delta T + p_E \quad (A3.5)$$

Quelques valeurs de p et de c sont données au tableau A3.2:

matériau	ρ (kg/m3)	c (J/kg/K)	matériau	ρ (kg/m3)	c (J/kg/K)
aluminium	2707	897	laiton	8400-8522	385
cuivre	8954	385	béton	2300-2400	880
fer	7897	449	bois	430-760	1600-2400
zinc	7144	388	brique	800-2100	920
acier	7700-8000	510	verre	2500-5900	730-840
fonte	7272	532	eau	1000	4187
bronze	8666	370	huile	760-950	1180-1970
			polystyrène	15	1300

tableau A3.2 – densité et capacité thermique massique de quelques matériaux

Régime stationnaire de conduction thermique: par définition, le champ de température reste constant

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 68/111

dans le temps $\partial T/\partial t = 0$ d'où, d'après l'équation de la chaleur: $\partial^2 T/\partial x^2 = 0$, la distribution spatiale de la température est donc linéaire: $T(x) = C_1 x + C_2$ où les constantes C_1 et C_2 sont déterminées par deux conditions aux limites.

Exemple: - Soit une barre cylindrique de longueur L isolée sur les côtés, dont les extrémités sont aux températures fixées T_1 et T_2 . Alors:

$$j_{Q} = \lambda \frac{\partial T}{\partial x} \approx \lambda \frac{T_{1} - T_{2}}{L}$$

conditions aux limites: $x = 0 \rightarrow T(0) = T_2$, $x = L \rightarrow T(L) = T_1$ donc: $T(x) = T_1 - \frac{T_1 - T_2}{L}x$ et la puissance est: $\Phi = j_O S$ soit:

$$\Phi = \frac{dQ}{dt} = \frac{\lambda S}{L} (T_1 - T_2) \quad (A3.6)$$

qui est de la forme $\Phi = \varphi S$ avec:

$$\varphi = h(T_1 - T_2)$$

avec: $h = \frac{\lambda}{L}$ (A3.7)

Exemple: - Soit une vitre d'épaisseur L = 5 mm, dont la face externe est à la température T₂, et la face interne à la température T₁, telles que T₁ – T₂ = 20°C. La puissance perdue par conduction thermique pour S = 1 m² de surface est:

 $\Phi = \frac{\lambda S}{L} (T_2 - T_1) = \frac{1 \times 1}{5.10^{-3}} \times 20 = 4000 W$ (4 kW de dépendition thermique, c'est énorme! soit il faut

augmenter l'épaisseur, soit faire du double vitrage, soit réduire la surface).

On démontre facilement que, dans le cas général où les milieux sont en contact en série, la surface de contact étant la même S, la puissance s'écrit (cf. **Annexe 5**):

$$\Phi = \frac{1}{\frac{L_1}{\lambda_1} + \frac{L_2}{\lambda_2} + \dots + \frac{L_n}{\lambda_n}} S(T_1 - T_2)$$
(A3.8)

où les L_k et λ_k sont l'épaisseur et la conductivité d'un milieu (k).

A3.2 – Diffusivité et effusivité

Donnons une expression très approchée de l'équation de la chaleur (A3.2) en 1D, sur un domaine de longueur L où la température est lentement variable pendant la durée Δt , on obtient:

$$\rho c \frac{T_A - T_B}{\Delta t} = \lambda \frac{T_A - T_B}{L^2}$$

on a donc, en ordre de grandeur, l'égalité: $\frac{\rho c}{\Delta t} = \frac{\lambda}{L^2}$

La vitesse de la propagation de la chaleur (ou célérité de l'onde thermique) est $v = \frac{L}{\Delta t}$ d'où:

 $Lv = \frac{\lambda}{\rho c} = \alpha$; donc v est grande si la quantité $\alpha = \lambda/\rho c$ est grande. On appelle **coefficient de diffusivité** cette quantité (unité: m²/s):

©Vincent Élie, Clément Marmion, Frédéric Élie - http://fred.elie.free.fr, janvier 2015 - page 69/111

$$\alpha = \frac{\lambda}{\rho c} \quad (A3.9)$$

Dans un matériau l'égalisation des températures (évolution vers une distribution uniforme de la température) se fera d'autant plus rapidement que la diffusivité α est grande.

On appelle coefficient d'effusivité, la quantité:

$$\beta = \sqrt{\lambda \rho c} \quad (A3.10)$$

soit encore: $\beta = \lambda / \sqrt{\alpha}$ (unité Wm⁻²K⁻¹s^{-1/2}).

Il caractérise la température de surface de contact de deux milieux de températures différentes. En effet, si T_1 et T_2 sont la température respectivement des milieux (1) et (2) mis en contact, on démontre que la température de l'interface est:

$$T = \frac{T_1 + (\beta_2 / \beta_1) T_2}{1 + \beta_2 / \beta_1} \quad (A3.11)$$

Si $\beta_1 >> \beta_2$ alors on a pratiquement T = T₁; si $\beta_1 << \beta_2$ on a pratiquement T = T₂. ceci explique que des corps de même température donnent, au toucher, des sensations différentes car le β_1 du doigt est différent du β_2 du corps que l'on touche.

A3.3 – Application à l'isolant du capteur solaire

A la partie arrière du capteur solaire (entre la plaque de l'absorbeur et le milieu arrière) on place une ou plusieurs couches d'isolant thermique. Elles peuvent être: laine de verre, polystyrène, mousse de polyuréthane... le **tableau A3.3** donne quelques valeurs de la conductivité, de la diffusivité et de l'effusivité de certains matériaux isolants.

matériau	conductivité λ (W/m/K)	masse volumique ρ (kg/m³)	chaleur massique c (J/kg/K)	diffusivité α (10 ⁻⁷ m²/s)	effusivité β (Wm²K⁻¹s⁻¹/²)
air (à 20°C)	0,025	1,3	1003	208	5,48
mousse polyuréthane	0,029	30	1600	6,0	37,44
laine de verre	0,036	40	840	10,7	34,80
polystyrène expansé	0,040	20	1500	13,3	34,68
laine de roche	0,040	40	840	11,9	36,67
laine	0,040	450	1880	2,6	78,45
liège expansé	0,048	120	1380	2,9	89,13
silicate de calcium	0,052	200	920	2,8	98,27
magnésie	0,055	200	880	3,1	98,78
soie	0,060	510	1250	0,94	195,7
béton cellulaire	0,075	280	800	12,8	66,29
papier journal compressé	0,105	130	1340	6,0	135,55
bois de pin	0,118	500	1210	1,95	267,2
bois de sapin	0,144	535	272	9,9	144,75
caoutchouc	0,153	1200	2170	0,6	624,6

PVC	0,166	1380	1000	1,2	479,2
bois de chêne	0,198	825	2400	1,0	626,13
plâtre	0,350	800	800	5,5	471,9
brique	0,697	1700	900	4,6	1027,67
sol naturel	1,500	1650			
glace (à 0°C)	2,210	917	2135	11,3	2079

tableau A3.3 – diffusivité et effusivité de quelques matériaux

Déterminons le flux de chaleur à travers l'isolant ϕ_{Pa} , qui correspond aux pertes thermiques entre la plaque de l'absorbeur (P) et le milieu arrière (a) (**figure A3.2**).

le transfert de chaleur entre la plaque (P) et l'arrière de l'isolant (a) est supposé stationnaire. L'équation de la chaleur (A3.2), avec $\partial T/\partial t = 0$, devient l'équation de Laplace:

$$\Delta T = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = 0$$

et en 1D, suivant Oz: $\frac{d^2 T}{dz^2} = 0$

figure A3.2 – flux de chaleur à travers l'isolant arrière du capteur solaire

Si L_k est l'épaisseur de la couche d'isolant n°k, et λ_k sa conductivité thermique, le flux qui traverse cette couche n°k est:

$$\varphi_k = \frac{\lambda_k}{L_k} (T_{k-1} - T_k)$$

Alors le flux ϕ_{Pa} entre la plaque (P) et l'arrière (a) est égal à chacun des flux qui traversent chaque couche n°k, puisque les milieux sont associés en série (cf. **Annexe 5**):

$$\begin{split} \phi_{Pa} = &\frac{\lambda_1}{L_1} (T_P - T_1) = \frac{\lambda_2}{L_2} (T_1 - T_2) = \dots = \frac{\lambda_n}{L_n} (T_n - T_a) \\ \text{d'où:} \quad T_P - T_1 = &\frac{L_1}{\lambda_1} \phi_{Pa} \quad , \quad T_1 - T_2 = \frac{L_2}{\lambda_2} \phi_{Pa} \quad , \dots, \quad T_n - T_a = &\frac{L_n}{\lambda_n} \phi_{Pa} \\ \text{donc:} \quad T_P - T_a = &(T_P - T_1) + (T_1 - T_2) + \dots + (T_n - T_a) = \phi_{Pa} \left(\frac{L_1}{\lambda_1} + \frac{L_2}{\lambda_2} + \dots + \frac{L_n}{\lambda_n} \right) \\ \text{Le flux thermique (pertes) à travers l'isolant arrière est finalement:} \end{split}$$

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 71/111

$$\varphi_{Pa} = \frac{T_P - T_a}{\sum_{k=1}^n \frac{L_k}{\lambda_k}} \quad (A3.12)$$

Conclusion: Pour minimiser les pertes φ_{Pa} il faut donc chercher des matériaux isolants tels que la $\prod_{k=1}^{n} L_{k}$

quantité $\sum_{k=1}^{n} \frac{L_k}{\lambda_k}$ soit grande. Les couches d'isolants doivent donc être de grandes épaisseurs et/ou

de conductivité thermique faible. L'air est toutefois à éviter à cause des pertes supplémentaires par convection qui s'ajouteraient à ϕ_{Pa} .

Remarque: - Il est inutile de plaquer fortement les isolants entre eux. Au contraire, des défauts de contact entraînent des couches d'air intermédiaires d'épaisseurs très faibles, qui sont autant d'isolants supplémentaires. On privilégiera donc aussi les matériaux alvéolaires ou poreux (mousse, laine, polystyrène expansé, liège...).

Exemple: - (figure A3.3) Calculer ϕ_{Pa} avec 2 couches d'isolants telles que:

- (1) polyuréthane L₁ = 50 mm, λ_1 = 0,029 W/m/K
- (2) plastique L₂ = 5 mm, λ_2 = 0,166 W/m/K

avec $T_P = 60^{\circ}C$ et $T_a = 15^{\circ}C$.

figure A3.3 – isolant arrière à deux couches d'isolants

Solution: (A3.12) devient ici

$$\Phi_{Pa} = \frac{T_P - T_a}{\frac{L_1}{\lambda_1} + \frac{L_2}{\lambda_2}} = \frac{60 - 15}{\frac{0.05}{0.029} + \frac{0.005}{0.166}} = 25 W/m^2$$

la perte obtenue est assez minime.

A4 – INFLUENCE DE LA HAUTEUR DU SOLEIL ET DE L'INCLINAISON DU CAPTEUR SOLAIRE

Le flux solaire incident φ_{ST} n'est pas forcément normal à la surface du capteur, et il ne correspond pas à une hauteur du soleil sur l'horizon égale à 90° (zénith)¹⁰. On note $\varphi_{S,0}$ = 1000 W/m² le flux solaire au sol pour la situation où il est normal à la surface du capteur et pour une hauteur du soleil au zénith (h = 90°)¹¹.

Le flux incident sur la couverture du capteur, ϕ_{ST} , diffère du flux solaire moyen au sol $\phi_{S,0}$ suite aux différents facteurs suivants, lesquels se répartissent en deux familles: facteurs géométriques liés à la position relative du capteur par rapport au soleil, et facteurs astronomiques liés à la position du soleil sur la sphère céleste:

a) – *Facteurs astronomiques* (figure A4.1), qui conditionnent la hauteur h du soleil sur l'horizon:

- latitude du lieu λ_T (on met l'indice « T », comme « terrestre », pour ne pas confondre avec une longueur d'onde ou une conductivité thermique !);

¹⁰ Cette situation, où le soleil est au zénith, correspond à l'heure de midi vrai sur l'équateur aux équinoxes et sur les tropiques en été.

¹¹ Dans cette situation limite, le capteur est donc posé à plat sur le sol horizontal, et le soleil au zénith !
- déclinaison δ du soleil par rapport à l'équateur céleste: elle varie au cours de l'année; l'axe des pôles terrestres étant incliné de 23°27' sur l'écliptique, cette variation se fait dans la gamme:
 -23°27'≤δ≤+23°27';
- angle horaire AH du soleil : angle entre le plan vertical contenant la direction du soleil et le méridien local; l'heure dans la journée est fonction de AH et de la longitude du lieu.

La relation qui donne la hauteur du soleil h en fonction des facteurs astronomiques λ_T , δ , AH est:

$$\sin h = \sin \lambda_T \sin \delta + \cos \lambda_T \cos \delta \cos AH \quad (A4.1)$$

b) - Facteurs géométriques liés à la position relative du capteur par rapport au soleil (figure A4.2):

- l'inclinaison (i) de la surface du capteur sur le plan horizontal;
- l'azimut local de la surface γ : angle entre la normale \vec{n} de la surface du capteur et le plan méridien local, compté positivement vers l'Est;
- l'angle d'incidence des rayons solaires par rapport à la normale \vec{n} .

La relation entre le flux solaire incident sur la surface du capteur, ϕ_{ST} , et le flux solaire moyen sur le sol terrestre $\phi_{S,0}$ est:

$$\varphi_{ST} = \varphi_{S,0} \cos\theta$$
 (A4.2)

avec:

$$\cos\theta = \sin\delta\sin\lambda_T \cos i - \sin\delta\cos\lambda_T \sin i \cos\gamma + \cos\delta\cos\lambda_T \cos i \cos AH + \cos\delta\sin\lambda_T \sin i \cos\gamma\cos AH + \cos\delta\sin i \sin\gamma\sin AH$$
(A4.3)

figure A4.2 – facteurs géométriques liés à la position relative du capteur par rapport au soleil

Nous donnons ci-après la démonstration des relations (A4.1) et (A4.3).

Démonstration de la relation (A4.1):

Considérons le système de repérage sur la sphère céleste (figure A4.3):

figure A4.3 – système de coordonnées sur la sphère céleste

avec:

- coordonnées équatoriales de l'astre A:
- AH: angle horaire
- δ : déclinaison de l'astre
- coordonnées locales (observateur M) de l'astre A:
- h: hauteur de l'astre (sur l'horizon)
- a : azimut de l'astre (angle entre le plan méridien du lieu et le plan « contenant » l'astre

Dans le plan MAB: $\overline{MA} = \cos \delta \overline{MB} + \sin \delta \overline{MP}_N$ Dans le plan du cercle méridien de l'astre: $\overline{MA} = \cos h \overline{MH} + \sin h \overline{MZ}$ On projette ces deux relations dans le trièdre $(M, \vec{x}, \vec{y}, \vec{z})$:

$$\overline{MA} = \cos h \begin{pmatrix} \sin a \\ \cos a \\ 0 \end{pmatrix} + \sin h \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos h \sin a \\ \cos h \cos a \\ \sin h \end{pmatrix}$$

et:

$$\overline{MA} = \cos \delta \begin{pmatrix} \sin AH \\ \cos AH \sin \lambda_T \\ \cos AH \cos \lambda_T \end{pmatrix} + \sin \delta \begin{pmatrix} 0 \\ -\cos \lambda_T \\ \sin \lambda_T \end{pmatrix}$$

Mais on a aussi:

$$\overline{MB} = \cos AH \ \overline{MK} + \sin AH \ \overline{MW} \ \text{avec:} \ \overline{MK} = \begin{pmatrix} 0\\ \sin \lambda_T\\ \cos \lambda_T \end{pmatrix} \qquad \overline{MW} = \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix} \rightarrow \qquad \overline{MB} = \begin{pmatrix} \sin AH\\ \cos AH \sin \lambda_T\\ \cos AH \cos \lambda_T \end{pmatrix}$$

ainsi que:

D'où les formules de Gauss:

 $\overline{MP}_N =$

 $-\cos\lambda_T$

 $\cos h \sin a = \cos \delta \sin AH$ $\cos h \cos a = \cos \delta \cos AH \sin \lambda_T - \sin \delta \cos \lambda_T$ $\sin h = \cos \delta \cos AH \cos \lambda_T + \sin \delta \sin \lambda_T$ (A4.4)

Les deux premières relations dans (A4.4) sont les formules donnant l'azimut « a »:

$$\sin a = \frac{\cos \delta \sin AH}{\cos h}$$

$$\cos a = \frac{\cos \delta \cos AH \sin \lambda_T - \sin \delta \cos \lambda_T}{\cos h}$$
(A4.5)

et la troisième relation n'est autre que (A4.1) (formule de la hauteur). - CQFD

Démonstration de la relation (A4.3):

Le système de coordonnées est représenté à la **figure (A4.4)**. On note:

- normale à la surface: \vec{n}
- direction du flux solaire incident: \vec{k}
- inclinaison du capteur sur le sol (supposé horizontal et plat): i
- azimut du capteur: γ
- azimut du soleil: a
- hauteur du soleil: h

Le flux reçu à la surface est: $\Phi_{ST} = \Phi_{S,0} \vec{k} \cdot \vec{n}$

Or:
$$\vec{n} = \begin{pmatrix} \sin \gamma \sin i \\ \cos \gamma \sin i \\ \cos i \end{pmatrix}$$
 et $\vec{k} = \begin{pmatrix} \cos h \sin a \\ \cos h \cos a \\ \sin h \end{pmatrix}$

figure A4.4 – position relative du capteur par rapport au soleil

donc: $\vec{k} \cdot \vec{n} = \sin i \cos h \cos(a - \gamma) + \cos i \sin h$

En exprimant « a » et « h » par leurs expressions données par les formules de Gauss (A4.4), la relation précédente devient, tout calcul fait:

$$\sin i \cos h \cos (a - \gamma) + \cos i \sin h$$

= sin i cos y cos d cos AH sin λ_T - sin i cos y sin d cos λ_T
+ sin i sin y cos d sin AH + cos i sin d sin λ_T + cos i cos d cos λ_T cos AH

qui n'est autre que la relation (A4.3) - CQFD

Remarque 1: - Les formules (A4.2) et (A4.3) peuvent aussi être réécrites, de manière plus avantageuse si l'on veut déterminer ϕ_{ST} en fonction des coordonnées locales azimut « a » et hauteur « h »:

 $\Phi_{ST} = \Phi_{S,0} \cos\theta$ $\cos\theta = \sin i \cos h \cos(a - \gamma) + \cos i \sin h$ (A4.6)

Remarque 2: - Cas limites de la relation (A4.3):

- surface plane horizontale: $\sin i = 0 \rightarrow$ (A4.3) devient: $\cos \theta = \sin \delta \sin \lambda_T + \cos \delta \cos \lambda_T \cos AH = \sin h$ on retrouve la relation (A4.1) qui fournit la hauteur du soleil sur l'horizon.
- surface verticale: $\cos i = 0$ $\sin i = 1 \rightarrow$ (A4.3) devient: $\cos \theta = \cos \delta \sin \lambda_T \cos \gamma \cos AH + \cos \delta \sin \gamma \sin AH - \sin \delta \cos \lambda_T \cos \gamma$
- surface orientée plein sud: $\gamma = 0 \quad \sin \gamma = 0 \quad \cos \gamma = 1 \rightarrow$ (A4.3) devient: $\cos \theta = \cos i (\sin \delta \sin \lambda_T + \cos \delta \cos \lambda_T \cos AH) + \sin i (\cos \delta \sin \lambda_T \cos AH)$

ce qui se réécrit, compte tenu de (A4.1):

 $\cos\theta = \cos i \sin h + \sin i (\cos \delta \sin \lambda_T \cos AH - \sin \delta \cos \lambda_T)$

Toutes les formules précédentes (A4.1), (A4.2), (A4.3), (A4.4), (A4.5), (A4.6), qui permettent de calculer l'angle d'incidence θ des rayons solaires sur la face du capteur, montrent qu'il est indispensable de connaître deux quantités pour obtenir le flux incident ϕ_{ST} : la déclinaison du soleil δ et l'angle horaire AH. La déclinaison dépend de la date dans l'année, car elle varie au cours de la révolution de la Terre autour du Soleil, et l'angle horaire dépend de la latitude du lieu et varie au cours de la journée, car il est relié à l'heure vraie (dont dépend l'heure légale).

Par ailleurs, ces quantités interviennent dans la durée d'ensoleillement, car elles déterminent les heures

de lever et de coucher du soleil. Or cette durée d'ensoleillement permet d'évaluer l'énergie solaire reçue au sol en moyenne en un lieu quelconque, donc renseigne sur les choix d'utilisation des capteurs solaires.

Nous allons donc détailler par la suite:

- au point (c): les différentes façons de déterminer la déclinaison;
- au point (d): les relations qui permettent d'obtenir l'angle horaire à partir de l'heure légale et des données géographiques (longitude) et des quelques paramètres astronomiques qui l'influencent;
- **au point (e)**: la durée d'ensoleillement, c'est-à-dire la durée qui sépare le lever du coucher du soleil

c) – Déclinaison du soleil δ : différentes formules

La déclinaison est l'angle formé entre la droite joignant l'observateur M et l'astre A et l'équateur céleste, compté le long du cercle horaire de l'astre (**figure A4.3**). Or, au cours d'une année de révolution de la Terre sur son orbite autour du soleil, le cercle horaire de l'astre tourne autour de l'axe des pôles (PN, PS) et fait un tour complet. Par suite de l'inclinaison de cet axe des pôles sur le plan de l'orbite terrestre (ou plan de l'écliptique), la déclinaison de l'astre varie au cours de l'année. En particulier, lorsque l'astre est le Soleil, cette déclinaison part de zéro lorsque l'écliptique (projection de la trajectoire annuelle du soleil sur la sphère céleste) coupe à l'Est l'équateur céleste (équinoxe du printemps), culmine aux solstices (en valeur absolue: > 0 en été, < 0 en hiver pour l'hémisphère Nord), et s'annule lorsque l'écliptique coupe l'équateur céleste à l'ouest (équinoxe d'automne).

La hauteur du soleil au-dessus de l'horizon à un moment quelconque de la journée, h, est une notion plus évidente pour tous; on se rend bien compte que, à une heure légale identique, cette hauteur est plus ou moins élevée en fonction de la date dans l'année, et donc de la saison. On se rend compte aussi que, à heure et date identique, la hauteur n'est pas la même selon que l'on est aux latitudes moyennes, polaires, tropicales ou équatoriales. Cette dépendance est traduite par la relation (A4.1): h dépend de δ (donc de la date), de la latitude du lieu λ_T , et de l'heure dans la journée (qui se calcule en fonction de l'angle horaire AH).

Recensons ici, sans plus les justifier, les différentes façons de calculer la déclinaison du soleil δ en fonction de la date, ou du rang du jour dans l'année:

- *Formule de Cook* (« pratique » pour les ordres de grandeur):

$$\sin \delta \approx 0.4 \sin \left(\frac{360 N}{365} \right) \quad (A4.7)$$

où: N nombre de jours à compter négativement depuis l'équinoxe du printemps (~ 21 mars) dans le sens inverse: printemps \rightarrow hiver \rightarrow automne \rightarrow été.

Exemple: calculer N pour 30 novembre 2013; équinoxe du printemps = 21 mars 2014, et le 30/11/2013 est situé à N = - 111 jours avant lui. (A4.7) donne alors: sin δ = - 0,38 soit une déclinaison δ = - 22°.

 Formule présentée par B. et P. Beckers (sept. 2010): elle est basée sur l'hypothèse d'une orbite terrestre circulaire (en réalité, on sait qu'elle est une ellipse):

$$\sin \delta = \sin \left(\pi \frac{23,45}{180} \right) \sin \left(2 \pi \frac{J-81}{365,25} \right)$$
 (A4.8)

où 23,45° = ε est l'inclinaison de l'axe des pôles sur le plan de l'écliptique

J : n° du jour de l'année (J = 1 pour le 1er janvier).

Noter que lorsque J = 81, la date correspondante est voisine du 21 mars et que la déclinaison est nulle (équinoxe du printemps). Il s'annule de nouveau lorsque $2\pi(J - 81)/365,25 = \pi$, donc au jour J = 264 qui correspond au 20 septembre, voisine de l'équinoxe d'automne.

- **Formule de Fletcher**: $\delta(^{\circ}) = 23,45 \sin\left(2\pi \frac{284+J}{365}\right)$ (A4.9)

Formule présentée par Campbell et Norman¹²: elle tient compte de l'excentricité de l'orbite terrestre:

$$\sin \delta = \sin \left(\pi \frac{23,45}{180} \right) \sin \left[278,97 + \frac{360}{365,25} J + 1,9165 \sin \left(356,6 + \frac{360}{365,25} J \right) \right]$$
(A4.10)

La formule commence comme celle (A4.8) mais le deuxième facteur est plus précis. Attention: tous les termes à l'intérieur du crochet [...] sont exprimés en degrés (et non en radians).

- *Formule de Spencer*¹³: elle utilise un développement en série de Fourier:

```
\delta(\text{radians}) = 0,006918 - 0,399912\cos\gamma + 0,070257\sin\gamma \\ -0,006758\cos2\gamma + 0,000907\sin2\gamma - 0,002697\cos3\gamma + 0,00148\sin3\gamma (A4.11)
```

avec ici : $\gamma = \frac{2\pi}{365}(J-1)$

La **figure A4.5** montre les valeurs de la déclinaison à différentes dates de l'année, calculées avec les formules (A4.8), (A4.9), (A4.10).

figure A4.5 – déclinaison calculée avec différentes formules pour quelques dates d'une année (calculs: F. Élie)

d) – Relation entre l'angle horaire et l'heure vraie, et facteurs intervenant dans l'heure vraie: heure locale, avance locale, décalage géographique et avance du temps (« équation du temps »)

Le temps de nos montres est un temps conventionnel local basé sur le temps moyen qui s'écoule régulièrement au long de l'année: c'est le Temps Universel Coordonné (UTC). Il est différent de l'heure solaire vraie H.

L'heure solaire vraie, en un lieu donné de la surface terrestre, est définie ainsi: la durée du jour diurne est celle qu'il faut au soleil pour se retrouver exactement dans la direction qui fait le même angle avec le plan méridien du lieu. Cette durée est divisée en 24 parties d'une heure. Une heure correspond donc à 15° sur la sphère céleste.

L'angle horaire AH est donc directement reliée à l'heure vraie par:

¹² G.S. Campbell et J.M. Norman: An Introduction to Environmental Biophysics - Springer, N.Y., 2e éd. 1998

¹³ J.W. Spencer: Fourier series representation of the position of the Sun – Search Vol. 2 (5) 172, 1971

$$AH = \pi \left(1 - \frac{H}{12} \right) \text{ en radians}$$

$$AH = 15(12 - H) \text{ en degrés}$$
(A4.12)

Bien sûr, à midi vrai (H = 12), on a AH = 0 (le soleil est au méridien, au sud); et à minuit vrai (H = 24), il est au méridien au nord (AH = $-\pi$).

La mesure de H fournit donc AH qui intervient dans les calculs de $\cos\theta$.

Mais H n'est pas une donnée immédiate de nos horloges, pour nos activités nous utilisons plutôt l'heure locale (ou heure administrative) H_{L} (liée à l'UTC). Pour déduire H à partir de H_{L} il faut introduire un certain nombre de corrections que voici:

- L'heure locale H_L est liée à un fuseau horaire de référence. Les différents territoires sont rattachés à l'un des 24 fuseaux horaires théoriques. Le fuseau zéro est le fuseau situé entre les longitudes 7,5° Ouest et 7,5° Est autour du méridien d'origine (Londres-Greenwich ou Bordeaux). Les fuseaux horaires théoriques correspondent à la division de la Terre en 24 secteurs: s'ils étaient rigoureusement appliqués par toutes les administrations des Terriens, l'heure HL serait par rapport au méridien zéro (ce que l'on appelle heure GMT: Greenwich Meridian Time) ¹⁴. Mais les pays introduisent des décalages, des « avances locales » (qui peuvent être négatives donc des retards) notés ΔH_L.
- Il faut tenir compte aussi du décalage géographique d'un lieu dans son fuseau horaire : un fuseau = 15° de largeur en longitude, donc, selon la latitude du lieu, la largeur géométrique du fuseau (exprimée en km) est égale à:

$$\Delta L = \frac{1}{24} 2 \pi R_T \cos \lambda_T$$

(R_T = 6360 km rayon de la Terre), soit: $\Delta L = 1664, 2\cos \lambda_T$ (km) (A4.13).

A l'équateur ($\lambda_T = 0$) : $\Delta L = 1664,2 \text{ km}$; aux latitudes de la Provence ou du Midi-Pyrénées ($\lambda_T = 43^\circ$) : $\Delta L = 1217 \text{ km}$; aux pôles $\Delta L = 0$.

Donc dans un même fuseau horaire les points ne sont pas alignés sur une même longitude et ne sont donc pas exposés au Soleil de la même façon: par rapport au début du fuseau horaire, le soleil a un décalage géographique ΔH_g lié à l'écart angulaire du point : tout calcul fait, ce décalage est une avance de +4mn par degré de décalage de longitude vers l'Est, et est un retard de -4mn par degré de décalage de longitude vers l'Ouest:

 $\Delta H_g = \begin{cases} +4\text{mn/°} \text{ décalage vers l'Est} \\ -4\text{mn/°} \text{ décalage vers l'Ouest} \end{cases}$ (A4.14)

- Il faut aussi tenir compte de la différence entre la période de rotation sidérale et la période de rotation diurne due au fait que, en une journée (c'est-à-dire une rotation sidérale) la Terre a parcouru une certaine distance sur son orbite autour du Soleil, et que, pour qu'un point de la surface terrestre, initialement en face du Soleil, puisse se retrouver exactement en face de lui, il faut que la Terre effectue une petite rotation supplémentaire : la période qui sépare les deux positions où le méridien se retrouve en face du Soleil est appelée *rotation diurne* (figure A4.6). On a : *jour sidéral* T_s = 23h 56mn 4s ; *jour diurne* : T_D = 24h 00mn.
- Mais l'orbite terrestre est une ellipse, de très faible excentricité e = 0,017, et l'inclinaison de l'axe des pôles sur le plan de l'écliptique, ε = 23,45° varie faiblement au cours du temps à cause de diverses perturbations gravitationnelles (qui ne seront pas détaillées ici !). Ces facteurs conduisent à une *avance du temps* E sur l'heure vraie au cours de l'année, qui est calculée au moyen de ce qui s'appelle en astronomie de position l' « *équation du temps* ». Diverses formules expriment l'équation du temps:
 - La formule dite « traditionnelle »: avance du temps moyen sur le temps solaire (en mn), précise à 25 s près:

 $E(mn) = 7,53 \cos B + 1,5 \sin B - 9,87 \sin(2B)$ (A4.15)

¹⁴ Pourquoi ne pas remplacer par SEMT (Saint-Emilion Meridian Time) puisque la ville de Saint-Emilion, près de Bordeaux, est à la même longitude que Greenwich?

où J : rang du jour dans l'année en cours (J = 1 pour le 1er janvier) et $B=2\pi \frac{J-81}{365}$

 Formule dérivée de celle complète de l'IMCCE¹⁵, simplifiée par V. Bourdin¹⁶, applicable entre 2013 et 2023:

$$E(mn) = 7,36\sin\left(\frac{2\pi J'}{365,242} - 0,071\right) + 9,92\sin\left(\frac{4\pi J'}{365,242} + 0,357\right) + 0,305\sin\left(\frac{6\pi J'}{365,242} + 0,256\right)$$
(A4.16)

où J' : rang du jour compté depuis le 1er janvier 2013 jusqu'en 2023.

figure A4.6 – jour sidéral et jour diurne

Les corrections à apporter à l'heure locale pour obtenir l'heure vraie est, compte tenu de tout ce qui précède:

 $H = H_L - \Delta H_L + \Delta H_g - E \quad (A4.17)$

où ΔH_g est calculée par (A4.14) et E par (A4.15) ou (A4.16).

Exemple: - lieu: Strasbourg, latitude $\lambda_T = 48,3^{\circ}N$, longitude $L_T = 7^{\circ}48'E$; heure locale donnée: $H_L = 11h43mn$, date 13 juin 2014 – Trouver H. Solution: Heure d'été, donc $\Delta H_L = 2h$; Décalage géographique: $7^{\circ}48' = 7,8^{\circ} \rightarrow 4mn/^{\circ} \times 7,8^{\circ} = 31,2 mn = 31mn12s = \Delta H_g$; Calcul de E par la formule traditionnelle (A4.15) : 13 juin 2014 à compter du 1er janvier 2014 donne J = 164; B = $2\pi (164 - 81)/365 = 1,428 rad$; E (mn) = 7,53 cos 1,428 + 1,5 sin 1,428 - 9,87 sin (2 x 1,428) = -0,215 mn = -13 s Finalement: H = 11h43 - 2h + 31mn12s - (-13s) = 10h14mn25s = 10,24 h Angle horaire: (A4.12) $\rightarrow AH = 15 \times (12 - 10,24) = 26,4^{\circ}$: le soleil est à 26,4° vers l'Est du méridien local. La hauteur du soleil au-dessus de l'horizon se calcule par la relation (A4.1), sachant que, à la date du 13 juin 2014, la déclinaison est $\delta = 23^{\circ}11' = 23,18^{\circ}$ (que l'on obtient par l'une des formules (A4.7) à (A4.11)):

sin h = sin 48,3° sin 23,18° + cos 48,3° cos 23,18° cos 26,4° = 0,84 soit : h = 57,3°

¹⁵ IMCCE: Institut de Mécanique Céleste et de Calcul des Éphémérides, Paris.

¹⁶ V. Bourdin: Énergie solaire thermique - Univ. Paris-Sud Orsay, Master PAM 2e année / énergies renouvelables, 2013

Il est facile de vérifier qu'à midi vrai (AH = 0) on aurait à cette date à Strasbourg: $h = 64,9^{\circ}$; tandis qu'en un lieu situé sur les tropiques du Cancer, sur le même méridien, on aurait $h = 89,7^{\circ}$.

Remarque: - Relation entre h, δ et λ_{τ} à midi vrai (AH = 0)

Il est possible de déterminer simplement la latitude du lieu λ_{T} quand on connaît la déclinaison (par les tables ou les formules précédentes) et la mesure de la hauteur h du soleil à midi vrai (ce que l'on fait en navigation à l'aide d'un sextant).

En effet (A4.1) se réduit à la relation suivante pour AH = 0 (figure A4.7):

Si la déclinaison est $\delta = 0$ (aux équinoxes) alors (A4.18) devient: $h = \frac{\pi}{2} - \lambda_T$; à l'équateur ($\lambda_T = 0$), on a donc h = 90° (le soleil est au zénith), et aux pôles ($\lambda_T = 90^\circ$) on a h = 0 (le soleil est au niveau de l'horizon).

Si la déclinaison est δ = +23°27' (23,5°) (solstice d'été), il vient cette fois: h = 113,5° - λ_T ; de même au solstice d'hiver (δ = -23°27' (-23,5°)), il vient : h = 66,5° - λ_T .

e) – Durée d'ensoleillement, et flux moyen sur une journée – Autres facteurs d'environnement qui l'influencent

e1) – Introduction:

Le flux solaire moyen reçu par le capteur en une journée d'ensoleillement pourrait, en première approximation, se ramener à un calcul du flux donné par (A4.2) moyenné sur la durée de l'ensoleillement, c'est-à-dire la durée entre le lever et le coucher du soleil (cette durée est notée T_J par la suite).

Nous allons donc d'abord déterminer T_J, toujours en exploitant les formules d'astronomie de position vus plus haut en (d). Ce sera l'objet du **paragraphe (e2)**.

Mais, de manière plus précise, le flux solaire reçu au niveau du capteur, ϕ_{ST} , dépend non seulement du flux solaire incident, mais aussi d'autres facteurs environnementaux: rayonnement diffus du ciel, rayonnement diffus du sol, variabilité du ciel (nébulosités...), effets de trouble. L'inclinaison du capteur a un rôle déterminant pour certains d'entre eux. Il convient donc de considérer que (A4.2) doit être complété par des termes qui prennent en compte ces facteurs, dont certains ont pour effet de modifier le flux qui correspond à la configuration inclinaison nulle (capteur horizontal). On notera ϕ_{ST} (i=0) le flux dans la configuration capteur horizontal.

Nous développerons alors, au **paragraphe (e3)**, quels termes correctifs doivent être apportés à (A4.2) pour tenir compte de ces effets.

Nous pourrons alors ensuite déterminer le flux solaire reçu en moyenne par un capteur sur une journée, entre le lever et le coucher du soleil ; on note \overline{W}_S ce flux moyen.

e2) – Durée du jour (entre le lever et le coucher du soleil):

Les astronomes expriment usuellement la relation (A4.17) qui donne l'heure vraie H, sous la forme suivante:

- L'angle horaire est compté négativement du méridien vers l'Ouest, et positivement du méridien vers l'Est: AH, avec AH(°) = $+/-15^{\circ} \times (12 - H)$, où H en heures,
- TSV = +H: temps solaire vrai (en heures); donc: $AH = +/-15 \times (12 TSV)$;
- TL = H_L : temps légal (donné par les horloges), en heures;
- ET = -E : équation du temps, en heures (noter qu'il est compté négativement) ¹⁷;
- $C_1 + C_2 = +\Delta H_L$: corrections de fuseau (C₁) et de saison (C₂), en heures ¹⁸;
- $L_T/15 = \Delta H_q$: correction géographique (L_T longitude en (°), ΔH_q en heures); $L_T < 0$ vers l'Ouest, L_T > 0 vers l'Est;
- TSM: temps solaire moyen, en heures; on a : TSM = $TL (C_1 + C_2) + L_T/15$
- TU: temps universel (en heures); c'est le temps solaire moyen au méridien d'origine, donc

$$TU = TSM - L_T/15 = TL - (C_1 + C_2)$$

(A4.17) devient alors, avec ces nouvelles conventions:

$$TSV = TL - (C_1 + C_2) \frac{L_T}{15} + ET = TSM + ET$$
 (A4.19)

Exemple: - Pour Toulouse (latitude $\lambda_T = 43.6^\circ$, longitude $L_T = +1.37^\circ$), calculer à la date du 1er avril, à l'heure légale TL = 11h:

- l'heure solaire vraie TSV;
 l'azimut « a » et la hauteur « h » du soleil.

Solution:

Le 1er avril on est à « l'heure d'été »: $C_1 = +1h$ et $C_2 = +1h \rightarrow \Delta H_L = C_1 + C_2 = +2h$. Correction en longitude: $L_T/15 = \Delta H_a = +1.37/15 = +0.09h$

Temps solaire moyen: TSM = $TL - (C_1 + C_2) + L_T/15 = 11 - 2 + 0,09 = 9,09h$

Reste à calculer ET: le 1er avril correspond au numéro du jour J = 91 à compter du 1er janvier. On utilise la formule traditionnelle (A4.15) avec B = 2π (J-81)/365 = 0,172 rad:

 $ET = -E = -7.53 \cos 0.172 - 1.5 \sin 0.172 + 9.87 \sin (2x0.172) = -4.35 mn = -0.072h$ D'où le temps solaire vrai donné par (A4.19): TSV = TSM + ET = 9,09 – 0,072 = 9,017h = 9h01mn Angle horaire correspondant : AH = 15x(12 - TSV) = 15 x (12 - 9,017) = 44,745° (avec la convention de signe).

L'azimut et la hauteur nécessitent de connaître la déclinaison du soleil δ à cette date (formules de Gauss (A4.4) et (A4.5)):

> sin h = sin δ sin λ_T + cos δ cos λ_T cos AH $\sin a = \cos \delta \sin AH / \cos h$

Le calcul de δ , avec par exemple la formule de Fletcher (A4.9) donne δ = 4,41°; d'où: $\sin h = \sin 4.41 \sin 43.6 + \cos 4.41 \cos 43.6 \cos 44.745 = 0.566 \rightarrow h = 34.5^{\circ}$ sin a = cos 4,41 sin (44,745) / cos 34,5 = 0,85 \rightarrow a = 58,4°

L'azimut au lever et au coucher du soleil, a₀, est obtenu par la seconde relation de (A4.5) dans laquelle on pose h = 0° (hauteur du soleil nulle au coucher et au lever); l'angle horaire correspondant est noté AH₀:

$$\cos a = \frac{\cos \delta \cos AH \sin \lambda_T - \sin \delta \cos \lambda_T}{\cos h} ;$$

h = 0 $\rightarrow \cos h = 1 \rightarrow \cos a_0 = \cos \delta \cos AH_0 \sin \lambda_T - \sin \delta \cos \lambda_T$

17 Donnons une autre formule, beaucoup plus précise, de l'équation du temps:

ET (mn) = -E = $-0,0002 + 0,4197 \cos \beta - 7,3509 \sin \beta - 3,2265 \cos 2\beta - 9,3912 \sin 2\beta - 0,0903 \cos 3\beta - 0,3361 \sin 3\beta$

où: $\beta(^{\circ}) = 360 \text{ x J}/366$, J numéro du jour dans l'année depuis le 1er janvier. 18 En France: $C_1 + 1h$; $C_2 = 0$ (hiver) et +1h (été)

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 82/111

Or la troisième relation de (A4.4) relie AH et h: $\sin h = \cos \delta \cos AH \cos \lambda_T + \sin \delta \sin \lambda_T$

Pour h = 0, on obtient alors l'angle horaire au lever et au coucher (exprimé en degrés ou radians): $\cos \delta \cos AH_0 \cos \lambda_T + \sin \delta \sin \lambda_T = 0$

soit:

 $\cos AH_0 = -\tan \delta \tan \lambda_T$ (A4.20)

Remarque: il y a deux solutions opposées et symétriques de (A4.20) puisque l'inconnue intervient par un cosinus.

En utilisant (A4.20) dans la relation donnant a₀, il vient: $\cos a_0 = -\sin \delta \left(\cos \lambda_T + \frac{\sin^2 \lambda_T}{\cos \lambda_T} \right)$, soit:

$$\cos a_0 = -\frac{\sin \delta}{\cos \lambda_T} \quad (A4.21)$$

Remarques:

- Comme pour l'angle horaire, (A4.21) fournit aussi deux valeurs opposées et symétriques pour l'azimut. Le « + » correspond au lever, le « - » correspond au coucher, les azimuts et angles horaires étant comptés à partir du méridien du lieu vers l'Est (valeurs négatives) et vers l'Ouest (valeurs positives). Elles dépendent uniquement de la date (via la déclinaison) et de la latitude.
- Aux équinoxes (δ = 0°), l'angle horaire ou l'azimut au coucher et au lever du soleil sont les mêmes quelle que soit la latitude: $AH_0 = +/-90^\circ$ et $a_0 = +/-90^\circ$

Exemple: - calculer l'azimut au lever et au coucher du soleil à Toulouse aux solstices d'hiver et d'été. Solution: $\lambda_T = 43,6^\circ$; déclinaison au solstice d'hiver $\delta = -23,45^\circ \rightarrow a_0 = +/-56,7^\circ$. Déclinaison au solstice d'été: $\delta = +23,45^\circ \rightarrow a_0 = +/-123,3^\circ$.

A partir de AH₀ on peut obtenir les heures légales du coucher et du lever du soleil, $TL_0(-)$ et $TL_0(+)$:

- on calcule les deux valeurs de AH_0 pour le lever et le coucher: $AH_0(+)$ et $AH_0(-)$, par (A4.20), compte tenu de la convention de signes;
- On déduit les heures solaires vraies de ces événements: TSV₀ = 12 AH₀/15
- On déduit l'heure légale correspondante par (A4.19): $TL_0 = TSV_0 + (C_1 + C_2) L_T/15 ET$

Exemple: - Toujours à Toulouse le 1er avril, quelles sont les heures légales de lever et de coucher du soleil? quelle est la durée du jour?

Solution: $\cos AH_0 = -\tan \delta \tan \lambda_T = -\tan 4,41^\circ \tan 43,6^\circ = -0,0734 \rightarrow AH_0 = +/-94,2^\circ \operatorname{soit} AH_0(+) = 94,2^\circ \operatorname{et} AH_0(-) = -94,2^\circ.$ Lever: $TSV_0(+) = 12 - AH_0(+)/15 = 12 - 94,2/15 = 5,72h$ Coucher: $TSV_0(-) = 12 - AH_0(-)/15 = 12 + 94,2/15 = 18,28h$ Heure légale du lever: $TL_0(+) = TSV_0(+) + (C_1 + C_2) - L_T/15 - ET = 5,72 + 2 - 0,09 + 0,072 = 7,7h = 7h42mn$ Heure légale du coucher: $TL_0(-) = TSV_0(-) + (C_1 + C_2) - L_T/15 - ET = 18,28 + 2 - 0,09 + 0,072 = 20,26h = 20h16mn$ Durée du jour: $TJ = TSV_0(-) - TSV_0(+) = 18,28 - 5,72 = 12,56h = 12h33mn.$

Dans cet exemple, on vient de voir la définition de la *durée du jour*: intervalle de temps séparant le coucher et le lever du soleil:

$$TJ = TSV_{0}(-) - TSV_{0}(+) = (AH_{0}(+) - AH_{0}(-))/15 = 2/15 \times |\arccos(-\tan \delta \tan \lambda_{T})| = 2/15 AH_{0}(+)$$

(A4.22)

Remarque: - il est toujours délicat de manipuler des valeurs absolues, avec des signes « - » dans les arguments et des « arc cos »; on montre que (A4.22) est rigoureusement équivalente à la formule de Duffie et Beckman qui est moins source d'erreur dans les calculs:

 $TJ(h) = 24\left(1 - \frac{1}{180} \arccos(\tan \delta \tan \lambda_T)\right) \quad \text{(A4.22 bis)}$

e3) – Irradiation solaire et influence de la durée du jour; facteurs influençant le flux solaire moyen au sol

Nous allons voir maintenant comment TJ intervient dans le calcul de l'irradiation solaire moyenne au sol, celle qui intéresse directement le capteur solaire. Or nous verrons plus loin que l'irradiation solaire moyenne au sol peut être corrélée à l'irradiation solaire moyenne hors atmosphère pour une même latitude géographique, par des relations empiriques de la météorologie. Grâce à ces corrélations empiriques la résolution du problème au sol peut être considérablement simplifiée. Il suffit pour cela de connaître les coefficients qui interviennent dans ces corrélations et qui sont issues de données climatologiques obtenues par des mesures statistiques.

Commençons donc d'abord par l'irradiation solaire hors atmosphère et le rôle qu'y joue TJ.

Définition: - L'irradiation solaire moyenne, ou plus simplement *irradiation solaire*, est l'énergie moyenne reçue par une surface horizontale de 1 m² sur une durée donnée finie.

L'hypothèse de surface horizontale est ici très importante: tout ce qui va être présenté n'est applicable qu'aux surfaces horizontales, et non pas inclinées. Le cas de l'inclinaison sera ensuite traité par des approches empiriques et des principes de portée pratique satisfaisante.

e3-a) – Irradiation solaire hors atmosphère sur une surface horizontale $\varphi_{s}^{*}(i=0)$

Hors atmosphère (figure A4.8), les phénomènes de diffusion du rayonnement solaire incident sur la surface n'interviennent pas.

Avec i = 0 (surface horizontale), (A4.6) donne:

$$\cos\theta = \sin h$$

et donc le flux solaire reçu par la surface horizontale hors atmosphère, $\phi_{s}^{*}(i=0)$, qui joue ici le rôle de ϕ_{sT} , est relié au flux solaire incident hors atmosphère en configuration surface horizontale $\phi_{s,0}$ par:

$$\varphi_{S}^{*}(i=0) = \varphi_{S,0} \sin h$$

Mais hors atmosphère le flux solaire incident $\phi_{s,0}$ est égale à la *constante solaire*:

$$\varphi_{S,0} = C_S = 1367 \text{ Wm}^{-2}$$

$$\rightarrow \phi_S^*(i=0) = C_S \sin h$$

Irradiation hors atmosphère \overline{W}_s : énergie moyenne sur la durée d'ensoleillement TJ reçue par 1 m² de surface horizontale hors atmosphère:

$$\overline{W}_{S}^{*}(i=0) = \int_{TJ} \varphi_{S}^{*}(i=0) dt = \int_{AH_{0}^{(-)}}^{AH_{0}^{(-)}} C_{S} \sin h dt$$

(sin h) est donné par la 3e relation de (A4.4), et en remplaçant dans l'intégrale on obtient:

$$\overline{W} *_{S}(i=0) = C_{S} \int_{AH_{0}(+)}^{AH_{0}(-)} (\sin \delta \sin \lambda_{T} + \cos \delta \cos \lambda_{T} \cos AH) dt$$

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 84/111

Sur une journée, δ est pratiquement constante, et λ_T est fixée; d'autre part, exprimée en heures on a: dt = - (12/ π) d AH (où AH est en radians). L'expression précédente s'intègre alors immédiatement:

$$\overline{W} *_{S}(i=0) = \frac{12}{\pi} C_{S}[\sin \delta \sin \lambda_{T} \cdot (AH_{0}(+) - AH_{0}(-)) + \cos \delta \cos \lambda_{T}(\sin (AH_{0}(+)) - \sin (AH_{0}(-)))]$$

Comme $AH_0(-) = -AH_0(+)$ par raison de symétrie, l'expression précédente devient:

$$\overline{W} *_{S}(i=0) = \frac{2 \times 12}{\pi} C_{S}[\sin \delta \sin \lambda_{T} \cdot AH_{0}(+) + \cos \delta \cos \lambda_{T} \sin (AH_{0}(+))]$$

Dans cette expression, $\overline{W^*}_{s}$ (i=0) a pour unités Wh/m²; mais les données sont fournies en kWh/m²/jour, la conversion conduit donc à:

$$W_{S}^{*}(i=0)(kWh/m^{2}/jour) = \frac{24}{\pi} \frac{C_{S}}{1000} [\sin\delta\sin\lambda_{T} \cdot AH_{0}(+) + \cos\delta\cos\lambda_{T}\sin(AH_{0}(+))]$$
(A4.23)

Où $AH_0(+)$ est en radians. Mais on a intérêt à exprimer (A4.23) avec la durée du jour TJ; pour cela la relation (A4.22) donne:

$$\overline{W}_{S}^{*}(i=0)(kWh/m^{2}/jour) = \frac{C_{S}}{1000} [\sin\delta\sin\lambda_{T} \cdot TJ(h) + \cos\delta\cos\lambda_{T}\frac{24}{\pi}\sin(7,5TJ(h))] \quad (A4.24)$$

où $TJ(h) = \frac{24}{\pi} AH_0(+)(rad)$ est la durée du jour exprimée en heures, et l'argument 7,5 TJ(h) est en degrés (en effet TJ(h). $\pi/24 = AH_0(+)$ (rad) = 180/ π . $\pi/24$.TJ(h) = 7,5 TJ(h)).

Exemple: - Quelle est l'irradiation journalière, hors atmosphère, au-dessus de la ville de Vannes (λ_T = 47,67°) le 1er mars (J = 60)?

Réponse: déclinaison à cette date calculée par (A4.10) (formule de Campbell-Norman) δ = -7,71° Calcul de TJ par (A4.22): TJ (h) = 2/15 x |arc cos (-tan δ tan λ_T)| = 10,86h (A4.24) $\rightarrow W^*_{S}$ (i=0) = 1367/1000x(sin (-7,71)sin(47,67)x10,86 + cos(-7,71)cos(47,67)x(24/\pi)sin (7,5x10,86))

 $\overline{W^*}_{s}$ (i=0) = 5,42 kWh/m²/jour reçu au-dessus de Vannes le 1er mars.

e3-b) – Irradiation au sol par ciel clair

Au sol, même par ciel clair (absence de nébulosité), on doit tenir compte du rayonnement diffusé en provenance du ciel et du sol, et non plus seulement du rayonnement direct. Les notations suivantes seront employées:

- rayonnement total reçu par la surface: φ_{ST}
- rayonnement direct du soleil reçu par la surface: φ's
- rayonnement diffusé par le ciel et par le sol reçu par la surface: φ"s
- rayonnement diffusé par le ciel: φ"sc
- rayonnement diffusé par le sol: φ"sg

On a donc:

- rayonnement total reçu = rayonnement direct + rayonnements diffusés $\rightarrow \phi_{ST} = \phi'_S + \phi''_S$
- rayonnement diffusé = rayonnement diffusé par le ciel + rayonnement diffusé par le sol $\rightarrow \phi$ "_S = ϕ "_{SC} + ϕ "_{SG}

La surface réceptrice est sensible au rayonnement diffusé par le sol seulement si elle est inclinée, ainsi:

- quand la surface est horizontale elle reçoit:
 - le rayonnement direct φ'_s
 - le rayonnement diffus du ciel $\,\phi^{\prime\prime}{}_{sc}\,$ donc:

$$\Phi_{ST}(i=0) = \Phi_{S}' + \Phi_{SC}''$$
 (A4.25)

- quand la surface est inclinée de i elle reçoit:
 - Le rayonnement direct (éq. (A4.6)):

$$\varphi_{S}' = \varphi_{S,0} \cos \theta$$
$$\cos \theta = \sin i \cos h \cos (a - \gamma) + \cos i \sin h$$

- Le rayonnement diffus du ciel reçu par la surface est une fraction du rayonnement diffusé par le ciel qui dépend de son inclinaison i: φ_{SC} ' '= 1+cosi/2 φ_{SC} ' '(i=0)
- Le rayonnement diffus du sol: Ce rayonnement résulte de la réflexion partielle par le sol du rayonnement total; le sol est supposé horizontal (i = 0), donc le rayonnement total est ici φ_{ST}(i=0). La fraction réfléchie est appelée *albédo du sol* pour le rayonnement solaire, notée α_G. On a donc, pour le rayonnement diffusé par le sol:

$$\varphi_{SG}''(i=0) = \alpha_G \varphi_{ST}(i=0)$$

Le capteur reçoit ce rayonnement diffusé par le sol avec une fraction qui dépend de son inclinaison i:

$$\Phi_{SG}'' = \frac{1 - \cos i}{2} \Phi_{SG}''(i=0) = \frac{1 - \cos i}{2} \alpha_G \Phi_{ST}(i=0)$$

 Le rayonnement diffus total reçu par la surface φ"s est la somme du rayonnement diffus du ciel reçu par la surface et du rayonnement diffus du sol reçu par la surface:

$$\Phi_{S}'' = \Phi_{SG}'' + \Phi_{SC}'' = \frac{1 - \cos i}{2} \alpha_{G} \Phi_{ST}(i=0) + \frac{1 + \cos i}{2} \Phi_{SC}''(i=0)$$
(A4.26)

D'où le *rayonnement total reçu* par la surface inclinée au sol par ciel clair:

$$\Phi_{ST} = \Phi_{S'} + \Phi_{S'} = \Phi_{S,0} \cos \theta + \frac{1 - \cos i}{2} \alpha_{G} \Phi_{ST} (i=0) + \frac{1 + \cos i}{2} \Phi_{SC'} = 0$$
(A4.27)

Remarques:

- Le facteur (cos θ) dépend éventuellement de γ (si le capteur n'est pas orienté plein sud), mais le rayonnement diffus est isotrope: il ne dépend donc pas de γ mais seulement de l'inclinaison i.
- Pour i = 0 (surface horizontale), (A4.27) devient:

$$\varphi_{ST}(i=0) = \varphi_{S,0} \cos \theta + \varphi_{SC} \, ' \, '(i=0)$$

Or $\cos \theta = \sin h$ en configuration horizontale, donc:

$$\Phi_{SC}''(i=0) = \Phi_{ST}(i=0) - \Phi_{S,0} \sin h$$
 (A4.28)

Cette relation (A4.28) présente l'intérêt pratique de déduire le rayonnement diffus du ciel $\varphi''_{sc}(i=0)$ par la mesure du flux total sur une surface horizontale, $\varphi_{sT}(i=0)$, et la hauteur du soleil h, le flux solaire moyen sur le sol terrestre $\varphi_{s,0}$ étant une donnée connue (de l'ordre de 1000 W/m²).

A partir du flux total reçu sur une surface inclinée au sol par ciel clair, donné par (A4.27), on peut en théorie déduire l'irradiation journalière correspondante:

$$\overline{W}_{S}(J/m^{2}/jour) = \int_{0}^{TJ} \varphi_{ST} dt$$

Mais en pratique, cette intégrale est difficile à calculer car le flux total varie avec le temps à travers:

- l'évolution de l'azimut a et de la hauteur h;

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 86/111

– l'évolution relativement complexe du rayonnement diffus du ciel et du sol au cours de la journée.

En outre, dans l'étude d'un capteur solaire, les orientations de celui-ci ne sont pas définies a priori; c'est même un des objectifs de l'étude de déterminer le choix le plus favorable. Envisager toutes les orientations possibles (i, γ) et mesurer chaque fois les flux est long et coûteux.

Pour contourner ces difficultés, et limiter les mesures de flux au seul cas du capteur horizontal, il faut trouver des relations de transformation qui permettent, par le calcul et de manière la plus simple possible, de déduire les valeurs de flux et d'irradiation dans le cas général d'orientations et d'inclinaisons quelconques. Le choix définitif s'appuie alors sur une exploitation des calculs dont les données d'entrées sont les résultats de mesure du cas capteur horizontal:

$$\overline{W}_{S}(i=0) = \int_{0}^{TJ} \varphi_{ST}(i=0) dt$$

Pouvoir relier directement \overline{W}_{s} à \overline{W}_{s} (i=0) est intéressant aussi parce que, en surface horizontale (i = 0), on peut évaluer par le calcul l'évolution journalière de \overline{W}_{s} (i=0): en effet, l'évolution du flux total reçu par le capteur horizontal peut être assimilée à un tronçon sinusoïdal entre midi vrai (a = 0) et le coucher AH₀(-) (ou symétriquement entre midi vrai et le lever AH₀(+)):

$$\varphi_{ST}(i=0)(t) = \varphi_{ST}(i=0)(midi)\sin\left(\frac{\pi t}{TJ}\right)$$

où t et TJ en heures; il s'ensuit l'irradiation journalière: $\overline{W}_{S}(i=0) = \int_{0}^{TJ} \varphi_{ST}(i=0) (midi) \sin\left(\frac{\pi t}{TJ}\right) dt$

soit:

$$W_{S}(i=0) = \frac{2}{\pi} TJ \phi_{ST}(i=0) (midi)$$
 en (Wh/m²/jour) (A4.29)

Définissons alors les *rapports d'éclairement* suivants, qui vont permettre d'établir une relation simple entre les flux pour un capteur d'orientation quelconque et le capteur horizontal:

- rapport d'éclairement direct: $R_S = \frac{\Phi_S'}{\Phi_S'(i=0)}$ - rapport d'éclairement diffus: $R_D = \frac{\Phi_S''}{\Phi_S''(i=0)}$
- rapport d'écartement total: $R_G = \frac{\Phi_{ST}}{\Phi_{ST}(i=0)}$

Nous allons voir tout de suite que ces rapports dépendent seulement des données angulaires (i, γ , a, h) et des données connues $\phi_{ST}(i=0)$ et $\phi_{S,0}$.

De (A4.6) on obtient immédiatement:

$$R_{S} = \frac{\Phi_{S}'}{\Phi_{S}'(i=0)} = \frac{\sin i \cos h \cos(a-\gamma) + \cos i \sin h}{\sin h}$$

soit:

$$R_{S} = \frac{\Phi_{S}'}{\Phi_{S}'(i=0)} = \frac{\sin i \cos(a-\gamma)}{\tan h} + \cos i \quad (A4.30)$$

De (A4.26):

$$R_{D} = \frac{\Phi_{S}''}{\Phi_{S}''(i=0)} = \frac{1+\cos i}{2} + \frac{1-\cos i}{2} \alpha_{G} \frac{\Phi_{ST}(i=0)}{\Phi_{SC}''}$$

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 87/111

et d'après (A4.28):

$$R_{D} = \frac{\Phi_{S}''}{\Phi_{S}''(i=0)} = \frac{1+\cos i}{2} + \frac{1-\cos i}{2} \alpha_{G} \frac{1}{1-\frac{\Phi_{S,0}}{\Phi_{ST}(i=0)} \sin h}$$
(A4.31)

De (A4.27), compte tenu de (A4.30):

$$R_{G} = \frac{\Phi_{ST}}{\Phi_{ST}(i=0)} = \frac{\Phi_{S,0}}{\Phi_{ST}(i=0)} \left(R_{S} - \frac{1+\cos i}{2} \right) \sin h + \frac{1+\cos i}{2} + \frac{1-\cos i}{2} \alpha_{G}$$

et l'on s'affranchit de la connaissance de h en remarquant que $\sin h = \frac{\Phi_{S}'(i=0)}{\Phi_{S,0}}$ d'où:

$$R_{G} = \frac{\Phi_{ST}}{\Phi_{ST}(i=0)} = \frac{\Phi_{S}'(i=0)}{\Phi_{ST}(i=0)} \left(R_{S} - \frac{1+\cos i}{2} \right) + \frac{1+\cos i}{2} + \frac{1-\cos i}{2} \alpha_{G}$$
(A4.32)

Avec cette remarque, R_D se réécrit aussi, d'après (A4.31):

$$R_{D} = \frac{\Phi_{S}''}{\Phi_{S}''(i=0)} = \frac{1+\cos i}{2} + \frac{1-\cos i}{2} \alpha_{G} \frac{1}{1-\frac{\Phi_{S}'(i=0)}{\Phi_{ST}(i=0)}}$$
(A4.33)

On a vu que:

$$\overline{W}_{S} = \int_{0}^{TJ} \varphi_{ST} dt$$

avec: $\Phi_{ST} = R_G \Phi_{ST}(i=0)$, par conséquent $\overline{W}_S = \int_0^{TJ} R_G \Phi_{ST}(i=0) dt$

A-t-on alors le droit d'écrire: $\overline{W}_{S} = R_{G} \int_{0}^{TJ} \varphi_{ST}(i=0) dt = R_{G} \overline{W}_{S}(i=0)$, où \overline{W}_{S} (i=0) est calculé avec

une bonne approximation par (A4.29) où R_G est pris à midi vrai? Ce serait bien pratique, mais en toute rigueur c'est faux car cela supposerait que R_G reste pratiquement constant pendant la journée!

Or il se trouve que, dans les applications pratiques, cette approximation est valide avec une erreur satisfaisante: les variations qui interviennent dans R_G au cours du temps, pour a et h, suivent des lois trigonométriques qui, sur une journée entre le lever et le coucher du soleil, se compensent presque. C'est donc pour des raisons d'approximation confirmées en pratique, donc **par pur pragmatisme**, que

l'on peut adopter:

$$\overline{W}_{S} \approx R_{G} \int_{0}^{TJ} \varphi_{ST}(i=0) dt = R_{G}(midi) \overline{W}_{S}(i=0) \quad (A4.34)$$

avec: $\overline{W}_{S}(i=0)=\frac{2}{\pi}TJ\phi_{ST}(i=0)(midi)$ (en Wh/m²/jour).

Ce n'est certes pas une preuve, mais l'exemple suivant permet de s'en rendre compte:

Exemple (d'après Jacques Bernard: *Énergie solaire, calculs et optimisation* – Ellipses 2004): - a) déterminer le flux solaire total φ_{ST} à midi solaire vrai (a = 0) pour un capteur situé à Nice (λ_T = 43,67°),

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 88/111

par ciel clair moyennement troublé ¹⁹ le 15 février, l'inclinaison du capteur étant i = λ_T , γ = 0 (plein sud). On donne:

- l'albédo solaire du sol: $\alpha_G = 0,3$

– pour un ciel moyennement troublé à midi: φ_{ST} (i=0) = 514,6 W/m² et $\varphi'_{S,0}$ = 773,8 W/m²

b) calculer l'irradiation solaire sur ce capteur pour cette même journée: \overline{W}_{s} (et comparer la valeur obtenue par (A4.34) avec celle obtenue par un calcul numérique rigoureux: 5,40 kWh/m²/jour). Solution:

a) Pour le 15 février: J = 46 \rightarrow par l'une des formules donnant la déclinaison, tous calculs faits: δ = -13,3°

Hauteur du soleil à midi vrai: sin h = cos δ cos λ_T + sin δ sin λ_T = cos ($\delta - \lambda_T$) = cos (-13,3 – 43,67) = 0,545 \rightarrow h = 33°

Angle horaire (absolu) au lever ou au coucher du soleil: $\cos AH_0(+) = - \tan \delta \tan \lambda_T \rightarrow AH_0(+) = |\operatorname{arc} \cos (-\tan \delta \tan \lambda_T)| = 77^{\circ}$

D'où la durée du jour: TJ = $24/\pi \times AH_0(+)(rad) = 24/\pi \times \pi/180 \times 77^\circ = 10,26h$

Flux du rayonnement direct à midi solaire vrai en horizontal, par ciel clair moyennement troublé:

 $\varphi'_{s}(i=0) = \varphi_{s,0} \sin h = 773,8 \sin 33^{\circ} = 421,4 \text{ W/m}^{2}$

Rayonnement diffus en horizontal:

$$"_{s}(i=0) = \phi_{sT}(i=0) - \phi'_{s}(i=0) = 514,6 - 421,4 = 93,2 \text{ W/m}^{2}$$

Rapports d'éclairement:

 $(A4.30) \rightarrow R_s = \sin 43,67/\tan 33 + \cos 43,67 = 1,787$

 $(A4.33) \rightarrow R_D = (1 + \cos 43.67)/2 + (1 - \cos 43.67)/2 \times 0.3 \times 514.6/93.2 = 1.091$

 $(A4.32) \rightarrow R_{G} = 421,4/514,6 \times (1,787 - (1 + \cos 43,67)/2) + (1 + \cos 43,67)/2 + (1 - \cos 43,67)/2 \times 0,3 = 1,661$

Rayonnements reçus par la capteur incliné à midi solaire vrai:

 $\varphi'_{s} = R_{s} \varphi'_{s}(i=0) = 1,787 \times 421,4 = 753 \text{ W/m}^{2}$

 $\varphi''_{s} = R_{D} \varphi''_{s}(i=0) = 1,091 \text{ x } 93,2 = 102 \text{ W/m}^{2}$

 $\varphi_{ST} = R_G \varphi_{ST}(i=0) = 1,661 \text{ x } 514,6 = 855 \text{ W/m}^2$

b) (A4.34) $\rightarrow \overline{W}_{s}$ = 1,661 x 2/ π x 10,26 x 514,6 = 5586 Wh/m²/jour = 5,586 kWh/m²/jour, valeur proche de celle obtenue par un calcul numérique rigoureux (5,40 kWh/m²/jour).

e3-c) – Irradiation au sol par ciel clair avec influence du trouble

Même un ciel clair peut être affecté d'une certaine opacité aux rayons solaires à cause de la présence dans l'atmosphère de poussières, polluants, aérosols (dont vapeur d'eau).

En configuration « ciel clair », $\phi_{s,0}$ et ϕ_{sT} (i=0) sont affectés par le trouble, lequel varie avec la hauteur du soleil (donc AH).

Résultats empiriques issus d'une multitude de relevés météorologiques en France (tableau A4.1):

conditions de trouble	φ _{s,0} (W/m²)	φ _{sτ} (i=0) (W/m²)
ciel très pur	$1210\exp\left(-\frac{1}{6\sin\left(h+1\right)}\right)$	$1130(\sin h)^{1,15}$
ciel moyennement troublé	$1230\exp\left(-\frac{1}{3,8\sin(h+1,6)}\right)$	$1080(\sin h)^{1,22}$
ciel trouble	$1260 \exp\left(-\frac{1}{2,3\sin\left(h+3\right)}\right)$	$995(\sin h)^{1,25}$

La hauteur h est exprimée en (°) dans ces formules

Le cas d'un ciel très pur se rencontre par exemple en haute montagne

NB: c'est en utilisant les formules du ciel moyennement troublé que nous avons obtenu les valeurs de $\varphi_{s,0}$ et $\varphi_{s,1}(i=0)$ dans l'exemple précédent de Nice (le vérifier en exercice!)

Remarque: lorsque $\dot{h} = 0$ (lever et coucher du soleil), $\phi_{s,0}$ est très faible et $\phi_{sT}(i=0)$ est rigoureusement nul.

tableau A4.1 – effets du trouble

Exemple: - Quel est le rayonnement direct sur une surface horizontale, $\varphi'_{s}(i=0)$, à Reims ($\lambda_{T} = 49,25^{\circ}$), à midi vrai le 1er juin, pour un ciel trouble? En déduire le rayonnement diffus $\varphi''_{s}(i=0)$.

¹⁹ L'effet du trouble sera présenté plus loin.

Quelle est la durée du jour TJ à cette date et l'irradiation journalière \overline{W}_{s} (i=0) ? Solution:

On a $\varphi'_{s}(i=0) = \varphi_{s,0} \sin h$, où h est donnée par: sin h = cos ($\delta - \lambda_T$) Le calcul de δ à la date du 1er juin (J = 153) utilise par exemple la formule de Beckers (A4.8): δ = 22,1°. D'où sin h = cos (22,1 – 49,25) = 0,89 \rightarrow h = 62,85°

Le flux $\varphi_{s,0}$ pour un ciel trouble est égal à $\varphi_{S,0} = 1260 \exp\left(-\frac{1}{2,3 \sin(h+3)}\right)$

 $\varphi_{s,0} = 1260 \exp(-1/(2,3 \sin(62,85+1))) = 776,27 \text{ W/m}^2$

D'où: $\varphi'_{s}(i=0) = \varphi_{s,0} \sin h = 776,27 x \sin 62,85 = 690,73 W/m^{2} (^{20})$

On en déduit: $\varphi''_{s}(i=0) = \varphi_{sT}(i=0) - \varphi'_{s}(i=0)$ où $\varphi_{ST}(i=0) = 995 (\sin h)^{1,25} = 995 (\sin 62,85)^{1,25} = 859,9$ W/m², soit $\varphi''_{s}(i=0) = 859,9 - 690,73 = 169,17$ W/m².

Durée du jour: TJ (h) = 2/15 x | arc cos (-tan δ tan λ_T)| = 2/15 |arc cos (-tan 22,1 x tan 49,25)| = 15,75h.

D'où l'irradiation journalière calculée avec (A4.29): $\overline{W_S}(i=0) = \frac{2}{\pi} TJ \phi_{ST}(i=0) (midi)$ (Wh/m²/jour), soit \overline{W}_S (i=0) = (2/ π) x 15,75 x 859,9 = 8622 Wh/m²/jour.

e3-d) – Irradiation au sol par ciel variable

En réalité, le ciel est rarement dans un même état de transparence au cours d'une journée: la nébulosité affecte la clarté, et dans bien des régions, et selon les saisons, il arrive même souvent qu'elle soit complètement dominante des journées entières. Il en résulte que l'irradiation journalière est très souvent largement en-dessous des valeurs théoriques vues précédemment dans le cas d'une journée entièrement ensoleillée.

La modélisation des effets d'un ciel variable ne peut pas être rigoureusement prédictive: elle s'appuie sur une exploitation statistique des observations météorologiques des différentes régions du monde. En météorologie, deux facteurs interviennent dans cette modélisation: le facteur d'éclairement et le facteur d'irradiation, définis ci-après.

Soit TI la durée d'insolation (donc ciel clair) dans la journée.

On a vu déjà que TJ est le durée du jour (durée séparant le coucher et le lever du soleil, quel que soit l'état du ciel). On a évidemment: $TI \le TJ$.

Les facteurs sont:

- facteur d'éclairement:

$$w = \frac{TI}{TJ}$$
 (A4.35)

 mais l'éclairement n'est pas le même selon l'heure de la journée: à midi, par ciel clair, l'éclairement est plus intéressant qu'à une autre heure. D'où le facteur d'irradiation:

$$w' = \frac{\text{énergie réelle reçue sur la journée}}{\text{énergie par ciel clair reçue sur la journée}}$$

l'énergie réelle reçue sur la journée, ou irradiation par ciel variable, est notée W
_{sv} ou W
_{sv} (i=0) pour une surface horizontale; d'où:

$$w' = \frac{\overline{W}_{SV}}{\overline{W}_{S}}$$
 (A4.36)

En un lieu donné, l'évolution annuelle de w et w' suit la même allure (figure A4.9).

Cela suggère alors:

- D'utiliser un seul des deux facteurs pour une modélisation statistique du ciel variable: ce sera w car il fait intervenir directement les irradiations;
- La durée du jour étant la même au sol et hors atmosphère, en un même lieu et une même date, les effets de l'inclinaison du capteur sont supposés être dans les mêmes proportions pour une surface au sol et la même surface hors atmosphère. En effet, en ciel variable on ne peut plus

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 90/111

²⁰ On aurait pu calculer directement, en configuration horizontale à midi vrai: $\varphi'_{s(i=0)} = \varphi_{s,0} \cos (\delta - \lambda_T)$

appliquer la formule (A4.29) établie pour le ciel clair au sol.

figure A4.9 – variation annuelle des facteurs d'éclairement w et d'irradiation w' en ordre de grandeur par exemple à Toulouse

De ce qui précède, il résulte le principe suivant adopté par les météorologues:

Sur une journée les rapports suivants sont égaux (*principe du comportement analogue en surface inclinée entre la situation hors atmosphère et la situation au sol*):

<u>irradiation hors atmosphère sur surface inclinée</u> irradiation hors atmosphère sur surface horizontale = <u>irradiation au sol sur surface inclinée</u> irradiation au sol sur surface horizontale

c'est-à-dire:

$$\frac{\overline{W}_{S}^{*}}{\overline{W}_{S}^{*}(i=0)} = \frac{\overline{W}_{S}}{\overline{W}_{S}(i=0)} \quad (A4.37)$$

soit:

$$W_{S} = \frac{\overline{W}_{S}(i=0)}{\overline{W} *_{S}(i=0)} W *_{S}$$

autrement dit l'irradiation au sol pour une surface inclinée doit être corrélée à celle hors atmosphère pour cette même surface inclinée. Pour fermer le problème, il faut une relation entre $\overline{W}_{s}(i=0)$ (irradiation au sol en surface horizontale) et $\overline{W}_{s}^{*}(i=0)$ (irradiation hors atmosphère en surface horizontale). Or, en météorologie, il existe une formule empirique qui fait intervenir précisément w, qui établit la

relation entre ces deux irradiations:

$$W_{S}(i=0)=(a_{1}+a_{2}w)W_{S}^{*}(i=0)$$
 (A4.38)

où a_1 , a_2 et w sont issues des données statistiques annuelles d'observations climatologiques en un lieu donné.

Par exemple, sur la Côte d'Azur, les valeurs moyennes annuelles sont:

w = 0,38

$$a_1 = 0,20$$

 $a_2 = 0,51$

Du principe (A4.37) et de la relation de fermeture (A4.38) il suit que:

$$\overline{W}_{s} = (a_{1} + a_{2} w) \overline{W}_{s}^{*}$$

Or:
$$\overline{W} *_{S} = \int_{AH_{0}(+)}^{AH_{0}(-)} \varphi *_{S} dt$$
 avec $\varphi_{S} *=R_{S}\varphi_{S} *(i=0)=R_{S}C_{S}\sin h$
ainsi que: $R_{S} = \frac{\sin i \cos (a-\gamma)}{\tan h} + \cos i$

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 91/111

donc:
$$\overline{W} *_{S} = C_{S} \sin i \int_{AH_{0}(+)}^{AH_{0}(-)} \cos(a-\gamma) \cos h \, dt + C_{S} \cos i \int_{AH_{0}(+)}^{AH_{0}(-)} \sin h \, dt$$

le deuxième terme n'est autre que: $C_S \cos i \int_{AH_0^{(+)}}^{AH_0^{(+)}} \sin h \, dt = \cos i \overline{W} *_S^{(i=0)}$

l'intégrale dans le premier terme est égale, d'après les formules de Gauss, à:

$$\cos \gamma \cos \delta \sin \lambda_T \int_{AH_0(+)}^{AH_0(-)} \cos AH \, dt - \cos \gamma \sin \delta \cos \lambda_T \int_{AH_0(+)}^{AH_0(-)} dt + \cos \delta \sin \gamma \int_{AH_0(+)}^{AH_0(-)} \sin AH \, dt$$

et en remplaçant $dt = -\frac{12}{\pi} dAH$ (où t en heures et AH en radians), et compte tenu de AH₀(-) = -AH₀(+), il vient finalement:

$$\overline{W} *_{S} = C_{S} \frac{24}{\pi} \sin i \cos \gamma (\cos \delta \sin \lambda_{T} \sin AH_{0}(+) - \sin \delta \cos \lambda_{T} AH_{0}(+)) + \cos i \overline{W} *_{S}(i=0)$$

Comme AH₀(+) (rad) = $\pi/24 \times TJ(h) \rightarrow AH_0(+)$ (°) = AH₀(+)(rad) x 180/ π = 7,5 TJ(h), l'expression précédente devient, en fonction de TJ(h):

$$\overline{W}_{S}^{*} = \frac{1}{1000} C_{S} \sin i \cos \gamma \left(\frac{24}{\pi} \cos \delta \sin \lambda_{T} \sin (7,5TJ) - \sin \delta \cos \lambda_{T} \cdot TJ\right) + \cos i \overline{W}_{S}^{*}(i=0)$$
(A4.39)

 \overline{W}_{s}^{*} est exprimée en (kWh/m²/jour), TJ en heures, l'argument 7,5TJ est en degrés (°). La relation (A4.39) diffère de (A4.24) du cas horizontal. D'ailleurs pour i = 0 on retrouve $\overline{W}_{s}^{*} = \overline{W}_{s}^{*}(i=0)$ qui est calculée par (A4.24).

Pour terminer le calcul de \overline{W}_s (au sol) il faut adjoindre à (A4.39) la relation de fermeture:

$$\overline{W}_{S} = (a_1 + a_2 w) \overline{W} *_{S}$$
 (A4.40)

Remarque: la formule (A4.39) n'est valide que pour $-10^{\circ} \le \gamma \le +10^{\circ}$

Exemple: - Déterminer l'irradiation journalière au sol \overline{W}_s du 15 avril sur une surface horizontale située à Casablanca, Maroc ($\lambda T = 33,65^\circ$).

Solution:

15 avril $\rightarrow \delta$ = 9,4° (formule de Fletcher (A4.8));

Durée du jour: formule (A4.22bis) de Duffie et Beckman: $TJ(h)=24(1-\frac{1}{180} \arccos(\tan \delta \tan \lambda_T))$ soit

TJ = 12,8h

Irradiation journalière hors atmosphère, surface horizontale (A4.24):

$$\overline{W}_{S}^{*}(i=0)(kWh/m^{2}/jour) = \frac{C_{S}}{1000} [\sin\delta\sin\lambda_{T} \cdot TJ(h) + \cos\delta\cos\lambda_{T}\frac{24}{\pi}\sin(7.5TJ(h))]$$

soit: $\overline{W}_{s}^{*}(i=0) = 10,12 \text{ kWh/m}^{2}/\text{jour}$ (les mesures météorologiques donnent la valeur réelle: 10,012 kWh/m²/jour, ce qui n'est pas si mal !).

Irradiation journalière au sol, surface horizontale (formule (A4.38)):

 $\overline{W}_{S}(i=0) = (a_{1}+a_{2}w)\overline{W}*_{S}(i=0)$

Or pour Casablanca on a: w = 0,68; $a_1 = 0,22$; $a_2 = 0,55$ d'où: $\overline{W}_s = 6,01$ kWh/m²/jour.

A5 – RÉSISTANCES THERMIQUES ET SCHÉMAS ÉQUIVALENTS

A5.1 – Résistance thermique

En approximation thermique linéaire la résistance thermique R est définie comme le rapport de la différence de températures aux bornes d'un milieu à la puissance du transfert thermique qui traverse ce

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 92/111

milieu, Φ (exprimée en watts W):

$$R(KW^{-1}) = \frac{T_1 - T_2}{\Phi}$$
 (A5.1)

NB: le flux thermique est la quantité de puissance thermique traversant une surface, il est noté φ et est exprimé en (W/m²): $\Phi(W) = \iint \varphi \, dS$

Exemples de résistances thermiques:

- En conduction thermique: $R = \frac{L}{\lambda S}$ (L: épaisseur caractéristique, λ conduction thermique en W/m/K, S surface traversée par le flux de chaleur), donc dépend de la géométrie du problème (figure A5.1):

figure A5.1 – résistances thermiques en conduction pour quelques géométries

 En convection thermique: la puissance totale Φ (en W) est proportionnelle à la différence de température entre une paroi et un milieu, généralement fluide (liquide ou gaz), en contact d'elle, ainsi qu'à la surface d'échange (figure A5.2):

$$\Phi = h_c S (T_1 - T_2), \text{ et donc: } R = \frac{1}{h_c S}$$

figure A5.2 – transfert thermique par convection entre une surface solide et un fluide

- En **rayonnement**: le flux thermique est de la forme $\varphi_R = h_R (T_1 - T_2)$, donc $\Phi = h_R S (T_1 - T_2)$, d'où la résistance:

$$R = \frac{1}{h_R S}$$

On note r_{th} la résistance thermique par unité de surface (K/W/m²), elle est telle que:

$$r_{th} = \frac{T_1 - T_2}{\Phi} = S \frac{T_1 - T_2}{\Phi} = RS$$
 (A5.2)

On peut vérifier aisément que, pour un milieu composite constitué de couches de matériaux et de fluides différentes, mais où les flux traversent la même surface, la résistance thermique de l'ensemble est la somme des résistances thermiques des milieux constitutifs (milieux en série).

En effet, les surfaces d'échange étant identiques et en série, on peut raisonner avec les flux: ceux-ci se conservent entre les deux extrémités qui bornent l'ensemble. Considérons par exemple le cas d'un

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 93/111

milieu constitué de n milieux intermédiaires en série, numérotés par k = 1, 2,...,n, séparés par des surfaces d'échange identiques en série; l'ensemble est borné par un milieu extérieur (e) et un milieu intérieur (i). Les milieux intermédiaires sont quelconques, fluides (donc éventuellement sièges de convection) ou solides (donc éventuellement sièges de conduction thermique). L'ensemble représente par exemple le cas d'un mur multicouches séparant l'air extérieur et l'air intérieur d'une maison. On veut calculer la résistance thermique de l'ensemble compris entre le milieu (e), à la température T_e , et le milieu (i), à la température T_i (**figure A5.3**), telle que:

$$\Phi = \varphi S = \frac{T_e - T_i}{R}$$

figure A5.3 – milieux en série

On note h_k les coefficients de transfert entre le matériau (k) et le matériau voisin (k+1), et L_k l'épaisseur du matériau (k). Aux extrémités, on note h_e le coefficient de transfert entre (e) et le matériau (1) et h_n celui entre (n) et (i). La puissance qui traverse l'ensemble, entre (e) et (i), est la même en toute section: Φ . Mais, par hypothèse, elle traverse la même surface S quelle que soit la section, il s'ensuit qu'en chacune de ces sections, le flux ϕ se conserve: $\Phi = \phi S$. On peut donc écrire qu'entre les milieux (e), (1), (2),...(k), (k+1), ... (n), (i):

$$\phi_e = \phi_1 = \phi_2 = \ldots = \phi_k = \phi_{k+1} = \ldots = \phi_n = \phi_i$$

 $\text{Or: } \phi_e = h_e \; (T_e - T_1), \; \phi_1 = h_1 \; (T_1 - T_2), \; \phi_2 = h_2 \; (T_2 - T_3), \; \dots \; , \; \phi_k = h_k \; (T_k - T_{k+1}), \; \phi_{k+1} = h_{k+1} \; (T_{k+1} - T_{k+2}), \; \dots \; , \; \phi_n = h_n \; (T_n - T_i)$

(Noter l'importance d'écrire toujours dans le même sens les différences de température, afin de conserver la même orientation des flux de transfert).

En additionnant les différences de température, et compte tenu de l'égalité des flux ci-dessus, il vient immédiatement:

$$(T_e - T_1) + (T_1 - T_2) + \dots + (T_k - T_{k+1}) + \dots + (T_n - T_i) = (T_e - T_i) = \phi/h_e + \phi/h_1 + \dots + \phi/h_k + \dots + \phi/h_n \\ = \phi (1/h_e + 1/h_1 + \dots + 1/h_k + \dots + 1/h_n) = r_{th} \phi$$

soit:

$$r_{th} = \frac{1}{h_e} + \frac{1}{h_1} + \frac{1}{h_2} + \dots + \frac{1}{h_k} + \dots + \frac{1}{h_n} = \sum_k r_{th,k} \quad (A5.3a)$$
$$R = \sum_k R_k \quad (A5.3b)$$

et donc:

Dans les relations (A5.3) on ne préjuge rien des coefficients $r_k = 1/h_k$; pour les milieux soumis à la conduction thermique, ils sont $r_k = 1/h_k = L_k/\lambda_k$, pour la convection on aurait $r_k = 1/h_{Ck}$, et pour le rayonnement: $r_k = 1/h_{Rk}$.

A5.2 – Coefficient de transmission

Il en va tout autrement si les surfaces d'échange ne sont pas égales: la même puissance Φ traverse l'ensemble mais les flux φ sont différents; il faut donc écrire les bilans avec Φ et non plus φ . Cette situation se présente par exemple quand on s'intéresse aux échanges de chaleur dans un tube multicouches, véhiculant un fluide B à l'intérieur, et au contact d'un fluide A à l'extérieur (**figure A5.4**). L'exemple suivant traite de deux tubes concentriques (1) et (2), de diamètre intérieur respectif D₁ et D₂,

©Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 94/111

le tube intérieur (1) est au contact du fluide (A), et le tube extérieur est au contact du fluide (B). Les épaisseurs des tubes sont e_1 et e_2 .

figure A5.4 – tubes circulaires concentriques entre deux fluides A et B

Si L est la longueur commune des deux tubes, les surfaces d'échange radial sont:

- entre A et (2): πLD_2
- entre (1) et (2): πL(D₁ + 2e₁)
- entre (2) et B: $\pi L(D_2 + 2e_2) = \pi L(D_1 + 2e_1 + 2e_2)$

Entre A et (2) le transfert est convectif, donc la résistance thermique est: $R_A = \frac{1}{h_{CA} \pi L(D_2 + 2e_2)}$

Entre (1) et (2) le transfert est conductif, donc on démontre que la résistance thermique est:

- aux bornes de (1):
$$R_1 = \frac{1}{2\pi L \lambda_1} \ln \left(\frac{D_1 + 2e_1}{D_1} \right)$$

- aux bornes de (2): $R_2 = \frac{1}{2\pi L \lambda_2} \ln \left(\frac{D_1 + 2e_1 + 2e_2}{D_1 + 2e_1} \right)$

Entre (1) et B le transfert est aussi convectif: $R_B = \frac{1}{h_{CB} \pi L D_1}$, avec D₂ = D₁ + 2e₁

En écrivant que Φ se conserve entre chaque interface (k) et (k+1), $\Phi = \frac{T_k - T_{k+1}}{R_k}$ et en additionnant les différences de température, on obtient: $T_A - T_B = R\Phi = (R_A + R_1 + R_2 + R_B)$ soit:

$$R = R_A + R_1 + R_2 + R_B$$

(ce ne sont donc plus les r_{th}, et donc les coefficients de transfert k = 1/h, qui s'ajoutent !). Avec l'approximation $S \approx \pi D_1 L$ (épaisseurs des tuyaux faibles devant la longueur) on obtient:

$$\frac{1}{k} = \frac{(T_A - T_B)S}{\Phi} = \frac{1}{h_{CB}} + \frac{1}{h_{CA}\left(1 + 2\frac{e_1 + e_2}{D_1}\right)} + \frac{D_1}{2\lambda_1} \ln\left(\frac{D_1 + 2e_1}{D_1}\right) + \frac{D_1}{2\lambda_2} \ln\left(\frac{D_1 + 2e_1 + 2e_2}{D_1 + 2e_1}\right)$$
(A5.4)

A5.3 – Déperditions thermiques

Quand c'est le solide qui émet un flux thermique vers l'extérieur non désiré, on parle de déperdition (s'il s'agit d'un solide destiné à chauffer l'extérieur, au contraire, ce ne serait pas considéré comme une déperdition).

Dans tous les cas, la déperdition est le flux dirigé de la paroi chaude du solide vers le milieu ambiant à une température plus faible (**figure A5.5**).

Cette déperdition s'effectue par convection et par rayonnement:

 Par rayonnement: le corps solide n'est pas souvent un corps noir parfait, la loi d'émission est corrigée par le facteur d'émissivité ε < 1:

$$\Phi = \varepsilon \sigma S T^4$$

(où σ = 5,67.10⁻⁸ Wm⁻²K⁻⁴ constante de Stefan)

figure A5.5 – transfert thermique d'une paroi chaude vers le milieu ambiant plus froid

On a donc entre la paroi et l'environnement:

$$\Phi(W) = \varepsilon \sigma S(T_1^4 - T_A^4)$$
 (A5.5)

Les thermiciens ont l'habitude d'exprimer (A5.5) sous la forme équivalente:

$$\Phi = 5,67 \times \varepsilon S \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_A}{100} \right)^4 \right]$$

puisque $(1/100)^4 = 10^{-8}$; on rappelle aussi que dans ces formules la température T est toujours en Kelvin (K) !

Par ailleurs, dans les applications courantes de thermique urbaine ou d'habitat, $T_A \approx T_1$ et (A5.5) prend la forme linéarisée, conforme au formalisme général $\Phi_{AB} = k_{AB} (T_A - T_B)$:

$$\Phi \approx 4 \varepsilon \sigma T_m^3 S (T_1 - T_A)$$

où $T_m = (T_1 + T_A)/2$ température moyenne, et le coefficient de transfert est ici:

$$k = h_R = 4 \varepsilon \sigma T_m^3$$
 (A5.5bis)

Quelques valeurs de l'émissivité sont données dans le tableau A5.1:

matériau	3	matériau	3
peinture aluminium	0,50	autres surfaces peintes	0,94
aluminium poli	0,04	aluminium oxydé	0,20
bronze poli	0,10	bronze brut	0,20
cuivre poli	0,02	cuivre oxydé	0,60
acier laminé	0,56	acier oxydé	0,88
fonte	0,81	étain brillant	0,06
tôle galvanisée	0,20	plâtre	0,91

tableau A5.1 – émissivité de quelques matériaux

Le tableau A5.1 nous montre que le revêtement d'aluminium autour d'une canalisation que l'on veut isoler thermiquement est intéressant pour minimiser les pertes par rayonnement, tandis que, au contraire, la fonte est indiquée pour transmettre vers l'extérieur un maximum de chaleur (radiateurs en fonte).

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 96/111

• Par convection: $\Phi = h_C S(T_1 - T_A)$

Application et complément: - On veut connaître la dépendition entre le fluide intérieur (température T_B), qui circule dans un tube cylindrique de température, et l'extérieur à la température T_A . La face interne du tube, au contact du fluide B est à la température T_2 , la face externe du tube, au contact de l'extérieur A, est à la température T_1 (**figure A5.6**).

figure A5.6 – déperdition de chaleur entre un fluide chaud et l'extérieur à travers une canalisation

La puissance se conserve à chaque interface:

- convection entre fluide intérieur B et paroi interne (2): $\Phi_{B2} = h_{CB}S_2(T_B T_2)$
- conduction dans la paroi de la canalisation entre la face (2) et (1): $\Phi_{21} = \lambda \frac{S}{e} (T_2 T_1)$
- convection entre paroi externe (1) et fluide extérieur (1): $\Phi_{AI} = h_{CA} S_1 (T_1 T_A)$

où S surface moyenne de la paroi de la canalisation, que l'on assimile aux surfaces interne et externe S_1 et S_2 (épaisseur e faible). L'égalité des puissances, avec cette approximation, aboutit à:

$$\Phi_{B2} = \Phi_{21} = \Phi_{AI} = k S(T_B - T_A)$$

$$\rightarrow h_{CB}(T_B - T_2) = k (T_B - T_A) = \frac{\lambda}{e} (T_2 - T_1) = h_{CA} (T_1 - T_A)$$

qui permettent de déduire les températures inconnues aux interfaces T1 et T2:

$$T_{2} = T_{B} - \frac{k}{h_{CB}}(T_{B} - T_{A})$$
$$T_{1} = \frac{k}{h_{CA}}(T_{B} - T_{A}) + T_{A}$$

De l'égalité:

$$T_{B} - T_{A} = (T_{B} - T_{2}) + (T_{2} - T_{1}) + (T_{1} - T_{A}) = \frac{k}{h_{CB}}(T_{B} - T_{A}) + k\frac{e}{\lambda}(T_{B} - T_{A}) + \frac{k}{h_{CA}}(T_{B} - T_{A})$$

on tire le coefficient de transfert:

$$k = \frac{1}{\frac{1}{h_{CB}} + \frac{e}{\lambda} + \frac{1}{h_{CA}}}$$
 (A5.6)

et la puissance thermique transmise entre le fluide intérieur B et le fluide extérieur A:

$$\Phi = k S (T_B - T_A)$$

où k est donné par (A5.6). Noter que h_{CB} et h_{CA} dépendent des vitesses d'écoulement en B et en A donc

©Vincent Élie, Clément Marmion, Frédéric Élie - http://fred.elie.free.fr, janvier 2015 - page 97/111

des différences de température $T_B - T_2$ et $T_A - T_1$.

A5.4 – Paroi dont la face externe est exposée au Soleil, et la face interne donne sur l'intérieur

Le bilan thermique d'une paroi exposée au rayonnement du soleil à l'extérieur, et au contact d'un volume interne, est représenté à la **figure A5.7**. L'extérieur est à la température T_e et l'intérieur à la température T_i . On cherche à connaître le coefficient de transfert qui intervient dans la puissance transmise entre l'extérieur et l'intérieur, à travers la paroi:

$$\varphi(W/m^2) = k(T_e - T_i)$$

Pour cela on fait le bilan des flux thermiques aux différents interfaces:

figure A5.7 – bilan des échanges thermiques entre une paroi, l'extérieur exposé au soleil, et l'intérieur

- bilan radiatif:
 - flux radiatif incident sur la paroi (1): $\Phi_i = \epsilon \Phi_S$, où φ_s flux solaire (c'est une donnée du problème), ϵ émissivité de la surface (1); la température externe est T_e (également donnée)
 - flux radiatif de la paroi (1) vers l'extérieur (e): $\Phi_R = h_R (T_e T_1)$ avec $h_R \approx 4 \varepsilon \sigma T_e^3$ (relation (A5.5bis))
- bilan convectif:
 - flux convectif entre la paroi (1) et l'extérieur (e): $\Phi_{CI} = h_{CI} (T_e T_1)$
 - flux convectif entre la paroi (2) et l'intérieur (i): $\Phi_{C2} = h_{C2} (T_2 T_i)$
- bilan conductif:
 - flux de transfert par conduction thermique entre les deux faces (1) et (2) de la paroi d'épaisseur L: $\phi_{12} = \frac{\lambda}{I} (T_1 T_2)$

Pour calculer le flux total entre (e) et (i) on se rappelle que, par analogie électrique, le flux ϕ est comme un courant, donc identique en toutes les sections associées en série, et que ($T_e - T_i$) est comme une tension aux bornes de l'ensemble de ces sections associées en série. On a donc en chacune d'elles:

• énergie échangée avec l'extérieur: $\Phi = \Phi_i + \Phi_{CI} + \Phi_R$

- énergie transmise dans la paroi: $\phi = \phi_{12}$
- énergie échangée avec l'intérieur: $\Phi = \Phi_{C2}$
- énergie transmise entre (e) et (i): $\varphi = k (T_e T_i)$

En remplaçant dans ces égalités les flux par les expressions données précédemment, et en décomposant la différence de température entre (e) et (i), on obtient:

$$T_e - T_i = (T_e - T_1) + (T_1 - T_2) + (T_2 - T_i) = \frac{\Phi}{k}$$

avec: $T_e - T_1 = \frac{\varphi - \varepsilon \varphi_S}{h_{Cl} + h_P}$, $T_1 - T_2 = \frac{L}{\lambda} \varphi$, $T_2 - T_i = \frac{\varphi}{h_{C2}}$, d'où:

$$T_{e} - T_{i} = k (T_{e} - T_{i}) \left(\frac{1}{h_{CI} + h_{R}} + \frac{L}{\lambda} + \frac{1}{h_{C2}} \right) - \frac{\epsilon \varphi_{S}}{h_{CI} + h_{R}}$$

ce qui fournit le coefficient de transfert, lequel dépend des températures extérieure et intérieure:

$$\frac{1}{k} = \frac{1}{h_{CI} + h_R + \frac{\epsilon \Phi_S}{T_e - T_i}} \left(1 + (h_{CI} + h_R) \left(\frac{L}{\lambda} + \frac{1}{h_{C2}} \right) \right)$$
(A5.7)

A5.5 – Équilibre thermique d'une plaque métallique exposée au Soleil

Soit une plaque métallique d'épaisseur L exposée au soleil. On veut savoir quelle est l'augmentation de température entre l'air ambiant et la surface, la température atteinte à la surface étant T_1 (**figure A5.8**).

figure A5.8 – plaque exposée au soleil

La surface étant horizontale, (A4.3) donne pour le flux solaire incident:

 $\Phi_i = \Phi_{ST} = \Phi_{S,0} \cos \theta = \Phi_{S,0} \sin h$ où h est l'angle entre le rayon incident et l'horizontale, et $\varphi_{s,0}$ est le flux solaire moyen au sol perpendiculaire à une surface horizontale (de l'ordre de 1000W/m² par ciel clair). En fait, cette valeur de φ_i doit être corrigée des effets d'absorption par la plaque d'une partie du rayonnement incident, avec une fraction ε appelée émissivité: $\Phi_i = \varepsilon \Phi_{S,0} \cos \theta$.

Mais il y aussi le transfert convectif entre l'air ambiant et la plaque: $\Phi_{CI} = h_{CI} (T_e - T_1)$

Le flux total φ est donc la somme de ces deux flux, l'ensemble « surface exposée » + « milieu ambiant » étant assimilé à un montage en parallèle (les courants, c'est-à-dire les flux s'ajoutent, mais la tension, c'est-à-dire la différence de température (T_e – T₁) étant la même aux bornes):

$$\varphi = \varphi_i + \varphi_{Cl} = k \left(T_e - T_1 \right)$$

Le coefficient de transfert k est inconnu: il faut une relation de fermeture, une hypothèse supplémentaire, pour le déterminer.

Plaçons-nous dans l'hypothèse où la face de la plaque opposée au soleil est elle aussi au contact de l'air ambiant, à la même température T_i, mais évidemment non soumise au rayonnement solaire. L'échange thermique de cette face arrière avec le milieu ambiant est lui aussi convectif; si T₂ est la température de la face arrière on aurait donc: $\Phi_{C2} = h_{C2}(T_2 - T_i)$. De plus, entre les deux faces de la plaque le transfert est par conduction thermique: $\Phi_{12} = \frac{\lambda}{L}(T_1 - T_2)$ Par conservation du flux (le courant) entre la face avant et la face arrière, on a donc:

©Vincent Élie, Clément Marmion, Frédéric Élie - http://fred.elie.free.fr, janvier 2015 - page 99/111

$$\varphi = k(T_e - T_i) = \varepsilon \varphi_{S,0} \cos \theta + h_{CI}(T_e - T_1) = \frac{\lambda}{L}(T_1 - T_2) = h_{C2}(T_2 - T_i)$$

On détermine k, comme d'habitude, en décomposant $(T_e - T_i)$, et utilisant l'égalité des flux précédente:

$$T_{e} - T_{i} = (T_{e} - T_{1}) + (T_{1} - T_{2}) + (T_{2} - T_{i}) = \frac{\phi - \varepsilon \phi_{S,0} \cos \theta}{h_{Cl}} + \phi \frac{L}{\lambda} + \frac{\phi}{h_{C2}} = \frac{\phi}{k}$$

Puisque $\Phi = k(T_e - T_i)$ l'égalité précédente devient:

$$T_{e} - T_{i} = k (T_{e} - T_{i}) \left(\frac{1}{h_{CI}} + \frac{L}{\lambda} + \frac{1}{h_{C2}} \right) - \frac{\epsilon \varphi_{S,0} \cos \theta}{h_{CI}}$$

d'où le coefficient de transfert qui, dans le cas général, dépend de (T_e - T_i):

$$\frac{1}{k} = \frac{1}{1 + \frac{\epsilon \, \varphi_{S,0} \cos \theta}{h_{Cl} (T_e - T_i)}} \left(\frac{1}{h_{Cl}} + \frac{L}{\lambda} + \frac{1}{h_{C2}} \right) \quad (A5.8)$$

On établit l'augmentation de température de la face exposée au soleil, $(T_1 - T_e)$, à l'aide de deux des relations sur le flux:

 $T_1 = T_e - \frac{\Phi - \epsilon \Phi_{S,0} \cos \theta}{h_{Cl}}$ où l'on choisit $\Phi = \Phi_{C2} = h_{C2} (T_2 - T_i)$ que l'on remplace dans la relation

précédente, ce qui donne:

$$T_1 - T_e = \frac{\varepsilon \varphi_{S,0} \cos \theta}{h_{Cl}} - \frac{h_{C2}}{h_{Cl}} (T_2 - T_i)$$
 (A5.9)

On voit que cette augmentation de température à la surface exposée au rayonnement solaire dépend linéairement de l'écart de température entre la face arrière et l'air ambiant arrière.

(A5.9) se simplifie sous les hypothèses suivantes:

- le coefficient de convection est le même à l'arrière et à l'avant (l'air ambiant à l'arrière et à l'avant est à des températures peu différentes, en ordre de grandeur, et les états hydrodynamiques sont identiques): h_{C1} = h_{C2}
- on néglige les phénomènes de conduction dans la plaque (épaisseur faible), donc la température de la face arrière est pratiquement la même qu'à la face avant: T₂ = T₁
- la température du milieu ambiant à l'arrière est pratiquement la même que celle à l'avant: T_i = T_e;
 c'est une condition cohérente avec la première hypothèse.

En conséquence de quoi, (A5.9) devient:

$$T_1 - T_e \approx \frac{\varepsilon \varphi_{S,0} \cos \theta}{2h_{Cl}} \quad \text{(A5.10)}$$

(A5.10) montre qu'une plaque exposée au soleil s'échauffe d'autant plus que son émissivité est grande (voir **tableau A5.1**) et qu'elle échange peu par convection avec l'air ambiant (peu de « refroidissement » par mouvement d'air).

Exemple: comparons la fonte et l'aluminium poli:

- fonte: $\epsilon = 0,81$

- aluminium poli: $\varepsilon = 0.04$

dans les deux cas les propriétés de l'air ambiant sont telles que h_{C1} = 15 W/m²/K, et on suppose le soleil

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 100/111

au zénith (cos θ = 1). Il vient alors:

- fonte: $T_1 T_e = 0.81 \times 1000 / (2 \times 15) = 27 \text{ °C}$
- aluminium poli: $T_1 T_e = 0,04 \times 1000 / (2 \times 15) = 1,3^{\circ}C$

Ces résultats peuvent sembler contraires à l'intuition, en tous cas à l'idée que l'on se fait sur les comportements thermiques des surfaces « claires » et des surfaces « mates »: ne dit-on pas qu'une surface brillante renvoie la chaleur et donc est plus « chaude » et que, à l'inverse, une surface sombre l'absorbe et « donc » est plus froide?

En fait, le rôle de l'émissivité est primordial et doit être bien compris. Une faible émissivité signifie que le matériau transmet peu la chaleur qu'il reçoit en interne dans sa structure: la chaleur reçue est peu absorbée. Faible émissivité signifierait donc faible transmission thermique? Pourquoi emploie-t-on alors ce terme « émissivité » qui fait plutôt penser à un pouvoir d'émission par le matériau?

Revenons pour cela au fondement du concept: un corps noir parfait, par définition, a une émissivité égale à 1. Un corps d'émissivité proche de 1 (grande émissivité) *rayonne* quasiment comme un corps noir lorsqu'il est chauffé: j'ai bien dit « rayonne » et non « absorbe ». Une plaque noire chauffée par une source interne de chaleur quelconque émet la chaleur comme un corps noir vers l'extérieur. C'est presque le cas de tous les corps de forte émissivité, comme la fonte, et c'est pour cela que ce matériau était idéal pour rayonner la chaleur des radiateurs: l'eau chaude qui circule à l'intérieur transmet sa chaleur aux serpentins en fonte, ceux-ci, à cause de leur forte émissivité, n'absorbent pas, ou plutôt ne piègent pas la chaleur dans leur structure interne, mais la transmettent très bien vers l'air ambiant de la pièce à chauffer. De même, si une plaque en fonte est exposée au soleil, elle captera et transmettra, sans la piéger, la chaleur reçue et celle-ci contribuera à faire augmenter la température de surface et des structures internes et avoisinantes.

La **loi de Kirchhoff** généralise cette propriété: pour un matériau donné, l'émissivité (ϵ) est égale à son absorptivité (a): a = ϵ (²¹). L'**absorptivité** est l'aptitude du matériau à absorber, sans piéger, et propager en interne le rayonnement thermique qu'il reçoit. S'il est le siège d'un rayonnement thermique dont la source est interne, il propagera ce rayonnement d'autant mieux que son absorptivité est grande, et donc il émettra ce rayonnement d'autant mieux (ce que traduit une émissivité grande). A l'inverse, s'il reçoit de l'extérieur un rayonnement thermique, il l'absorbera, sans piéger, d'autant plus facilement que son absorptivité est élevée, et donc transmettra l'énergie reçue vers les structures environnantes et sa surface; de ce fait, sa température de surface augmentera d'autant plus facilement.

Les matériaux de faible émissivité sont souvent brillants. D'après ce qui précède, ils récupèrent peu de chaleur à partir du rayonnement reçu, et donc la transmettent peu. En conséquence, le rayonnement thermique reçu est presque intégralement restitué vers le milieu d'où il provient, et donc la température interne et de surface du matériau augmente peu. Lorsqu'ils sont chauffés de l'intérieur, ils transmettent peu de chaleur vers l'extérieur. Ce sont donc de bons isolants thermiques pour des produits qu'ils renferment. Ainsi les conserves en aluminium garantissent au mieux une isolation thermique des aliments qu'elles contiennent, et donc préservent ceux-ci des dégradations chimiques qui résulteraient des échanges thermiques avec l'environnement. C'est le même principe pour les bouteilles thermos.

Alors, on se demandera: pourquoi lorsque je me place à proximité d'une surface claire exposée au soleil (un mur blanc par exemple) j'ai plus chaud que devant une surface sombre? C'est précisément à cause du fait que la surface claire, donc de faible émissivité (ou absorptivité) renvoie presque intégralement le rayonnement solaire: lorsque je passe devant cette surface je suis soumis non seulement au rayonnement solaire direct mais aussi au rayonnement réfléchi par elle. De plus, c'est bien pour cela que, dans les pays chauds et ensoleillés, les murs externes des maisons sont blancs: on améliore ainsi l'isolation thermique de l'intérieur. Mais il faut bien se souvenir que la surface d'un matériau de faible émissivité est à une température peu élevée: c'est au voisinage très immédiat de cette surface qu'elle est par contre élevée, car elle est résulte de la contribution du rayonnement thermique direct incident et de celui réfléchi avec un taux égal à $(1 - \varepsilon)$; et ceci nous fait dire, en apparence, que la surface brillante est « chaude ».

En termes de bilan à la surface (1) soumise au rayonnement thermique incident ϕ_s issu de l'environnement (e), orienté de (e) vers (1), on a, sur cette surface, la somme du flux incident (indépendant de la surface) ϕ_s et du rayonnement réfléchi par la surface, donc orienté de (1) vers (e), donc compté négativement; ce rayonnement réfléchi est la proportion qui n'est pas transmise au matériau, donc $(1 - \epsilon)\phi_s$. Le bilan de flux incident à la surface est donc:

$$\phi_i = \phi_S - (1 - \epsilon) \phi_S = \epsilon \phi_S$$

²¹ En fait, cette égalité est statistique: en toute rigueur elle est valable pour des domaines différents de longueurs d'onde du spectre électromagnétique: $a(\lambda) = \varepsilon(\lambda)$. Cette précision est très importante car elle est à la base de la propriété de sélectivité d'un milieu, à la base du phénomène d'effet de serre.

ce qui justifie l'écriture vue plus haut, à propos de la plaque exposée au soleil: $\Phi_i = \epsilon \Phi_{S,0} \cos \theta$ dans laquelle $\varphi_s = \varphi_{s,0} \cos \theta$.

A5.6 – Quelques résultats pratiques

A5.6.1 – Conduits chauffés encastrés dans une paroi ou un plancher: calcul du rendement

Soit un conduit d'eau chaude à la température T, chauffée par le soleil par exemple. La température du compartiment capteur est notée T_i et T_e est la température externe vers l'utilisation (**figure A5.9**).

figure A5.9 – transfert thermique entre un conduit d'eau chaude et l'infrastructure d'une maison

L'eau dans le conduit, à la température T, doit chauffer le local (2) qui est à la température T_e , donc le flux thermique échangé entre le conduit et ce local (2) doit être suffisant:

$$\phi_2 = k_2(T - T_e)$$

mais le conduit échange cède aussi de la chaleur au local (1) à la température T_i, ce qui n'est pas souhaité:

$$\varphi_1 = k_1 (T - T_i)$$

Rendement:
$$\eta = \frac{\text{chaleur utilisée en } (2)}{\text{chaleur produite}} = \frac{\phi_2}{\phi_1 + \phi_2}$$
, soit:
$$\eta = \frac{1}{\frac{k_1}{k_2} \frac{T - T_i}{T - T_e} + 1}$$
(A5.11)

Le rendement est proche de 1 soit lorsque $T_i = T$ (local (1) déjà chauffé donc peu d'échange thermique avec le conduit), soit lorsque $k_1 = 0$ (dispositif conçu de manière à avoir un transfert nul en (1), par exemple en jouant sur les matériaux des parois et planchers en (1)), soit k_2 très grand au niveau du local (2).

A5.6.2 – Transfert de chaleur à un conduit cylindrique enfoui

Voir **figure A5.10**: le transfert s'effectue par conduction à travers le revêtement dans lequel le conduit est enfoui, depuis l'extérieur.

On montre que la puissance transmise (²²) est (exercice !):

²² Puissance et non flux, car contrairement au cas de sections montées en série, les surfaces d'échanges ne sont pas identiques.

[©]Vincent Élie, Clément Marmion, Frédéric Élie – <u>http://fred.elie.free.fr</u>, janvier 2015 - page 102/111

$$\Phi_{ei} = \frac{2\pi \lambda L(T_e - T_i)}{\ln\left(\frac{z + \sqrt{z^2 - R^2}}{R}\right)} \quad (A5.12)$$

où: L longueur du tuyau, z profondeur, λ conductivité thermique du revêtement.

figure A5.10 – transfert de puissance entre la surface et un conduit enfoui

A5.6.3 – Déperdition de chaleur par les parois d'un tuyau exposé à l'air

Un tronçon de tuyau de longueur L, dont la température de surface est T₁, est exposé à l'air où la vitesse du vent, perpendiculaire au tuyau, est U. la température de l'air est T_e (**figure A5.11**). Le diamètre du tuyau est D, la surface exposée est donc S = $\pi LD^2/4$. La déperdition de chaleur s'effectue par convection entre la surface du tuyau et l'air ambiant; la présence du vent a aussi pour effet de refroidir la surface d'où l'intervention de la conductivité thermique du tuyau. Au final, on montre que la puissance Φ_c s'exprime par:

entre un tuyau et l'air ambiant

avec:

$$_{C} = 0,24 D^{-0,4} U^{0,6} \left(\frac{\lambda}{v^{0,6}}\right)$$
 (A5.13)

 $\Phi_C = h_C S(T_1 - T_e) \quad \text{(en W)}$

où: hC en W/m²/K; U en m/s, λ conductivité thermique du tuyau en (W/m/K), D en m, ν viscosité cinématique de l'air (en m²/s).

A5.6.4 – Puissance thermique reçue par un corps 1 entièrement entouré dans un corps 2 qui émet un rayonnement thermique

Soit un corps 1, de surface S_1 à la température T_1 , placé dans une cavité complètement fermée dont les parois 2 ont une surface S_2 à la température T_2 et émettent un rayonnement thermique (**figure A5.12**).

Les surfaces 1 et 2 émettent en propre, c'est-à-dire comme si elles étaient seules, un rayonnement de puissances:

$$\Phi_1 = \Phi_1 S_1$$

$$\Phi_2 = \Phi_2 S_2$$

Soient Φ_{e1} et Φ_{e2} les puissances totales émises par ces surfaces 1 et 2:

$$\Phi_{e1} = \Phi_{e1} S_1$$

$$\Phi_{e2} = \Phi_{e2} S_2$$

figure A5.12 – transfert de puissance thermique entre les parois d'une cavité et un corps qu'elle renferme

Les puissances incidentes sur ces surfaces sont:

$$\Phi_{i1} = \Phi_{i1} S_1$$

$$\Phi_{i2} = \Phi_{i2} S_2$$

Ces puissances proviennent du rayonnement propre et d'une fraction du rayonnement réfléchi par l'autre surface. Détaillons cela:

Par suite de la concavité de la surface 2, seule une fraction du flux qu'elle émet Φ_{e2} est reçue par la surface 1: soit $\mu \Phi_{e2}$ cette puissance (le restant est réfléchi successivement sur les différents points de la surface 2 et n'atteint jamais 1).

En revanche, tout le rayonnement Φ_{e1} émis par 1 atteint 2.

Chaque surface 1 et 2 réfléchit une partie du rayonnement incident issu de l'autre, avec une fraction r_1 et r_2 respectivement: ainsi 2 réfléchit $r_2\Phi_{i2}$ et 1 réfléchit $r_1\Phi_{i1}$.

Bilan des puissances en 2 (paroi de la cavité):

-	puissance émise Φ_{e2} =	rayonnement propre émis par 2 (φ ₂ S ₂) +
		rayonnement incident réfléchi par 2 ($r_2\Phi_{i2}$)
-	puissance incidente Φ_{i2} =	rayonnement propre émis par 1 (φ ₁ S ₁)
		fraction du rayonnement émis par 2 reçue par 1 puis réfléchie par 1 ($\mu r_1 \Phi_{e2}$)
		fraction du rayonnement émis par 2 non interceptée par 1 $(1 - \mu)\Phi_{e2}$

On a donc:

$$\Phi_{e2} = \Phi_2 S_2 + r_2 \Phi_{i2}$$

$$\Phi_{i2} = \Phi_1 S_1 + \mu r_1 \Phi_{e2} + (1 - \mu) \Phi_{e2}$$
(A5.14)

Les coefficients de réflexion représentent la fraction du rayonnement qui n'a pas été absorbée dans le matériau, et comme la fraction absorbée est définie par l'absorptivité « a », ou ce qui revient au même, l'émissivité ε (loi de Kirchhoff), on a:

$$r_1 = 1 - a_1$$

 $r_2 = 1 - a_2$

d'où il suit que les relations (A5.14) aboutissent au système d'équations où les inconnues sont Φ_{i2} et Φ_{e2} :

$$-(1-a_{2})\Phi_{i2}+\Phi_{e2}=\phi_{2}S_{2}$$

$$\Phi_{i2}-(1-\mu a_{1})\Phi_{e2}=\phi_{1}S_{1}$$

dont la solution est:

$$\Phi_{i2} = \frac{-(1-\mu a_1)\phi_2 S_2 - \phi_1 S_1}{\Delta}$$
$$\Phi_{e2} = \frac{-(1-a_2)\phi_1 S_1 - \phi_2 S_2}{\Delta}$$
avec:
$$\Delta = (1-a_2)(1-\mu a_1) - 1$$

Le bilan de puissance en 2 donne:

$$\Phi_2 = \Phi_{i2} - \Phi_{e2} = \frac{a_2 \Phi_1 S_1 - \mu a_1 \Phi_2 S_2}{\mu a_1 + a_2 - \mu a_1 a_2}$$
(A5.15)

Or les rayonnements propres sont définis par le rayonnement du corps noir corrigé de l'émissivité a = ε:

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 104/111

$$\varphi_1 = \varepsilon_1 \sigma T_1^4 = a_1 \sigma T_1^4$$
$$\varphi_2 = \varepsilon_2 \sigma T_2^4 = a_2 \sigma T_2^4$$

d'où:

$$\Phi_2 = \sigma a_1 a_2 \frac{T_1^4 S_1 - \mu T_2^4 S_2}{\mu a_1 + a_2 - \mu a_1 a_2}$$
(A5.16)

Il reste à déterminer µ: pour cela on constate que la puissance en 2 est nulle si $\mu = \frac{S_1}{S_2} \left(\frac{T_1}{T_2}\right)^4$; mais la

puissance serait nulle aussi si $T_1 = T_2$ avec $\mu = S_1/S_2$, donc μ est indépendant de ϕ_1 , ϕ_2 , T_1 , T_2 et dépend uniquement des surfaces:

$$\mu = \frac{S_1}{S_2}$$
 (A5.17)

il en résulte que (A5.16) est en définitive:

$$\Phi_2 = k S_1 (T_1^4 - T_2^4)$$

avec: $\frac{1}{k} = \frac{1}{\sigma} \left(\frac{1}{a_1} + \frac{S_1}{S_2} \left(\frac{1}{a_2} - 1 \right) \right)$ (A5.18)

Si μ = S₁/S₂ \rightarrow 0 (contenu petit devant le contenant, comme dans un four), (A5.18) se simplifie en:

$$\Phi_2 \approx \sigma a_1 S_1 (T_1^4 - T_2^4)$$
 (A5.19)

la chaleur que le four cède (car Φ_2 négative puisque $T_1 < T_2$) au produit qu'il enferme est d'autant plus importante que le produit est apte à absorber la chaleur (a₁ grande) et que sa surface S₁ est grande.

Exemple: - tube en acier laminé ($a_1 = \epsilon_1 = 0,56$), de diamètre D = 10 cm et de longueur L = D, à T₁ = 400°C, placé dans un four de très grandes dimensions à T₂ = 1000°C; rappel σ = 5,67.10⁻⁸. Alors: S₁ = $\pi D^2/4 + \pi D^2 = 3,92.10^{-2} m^2$

D'où: $\Phi_2 = 5,67.10^{-8} \times 0,56 \times 0,0392 ((400 + 273)^4 - (1000 + 273)^4) = -3 \text{ kWatts.}$

figure A5.13 – transfert thermique entre tubes coaxiaux

La puissance thermique est transférée successivement entre l'extérieur (e) et l'intérieur (i) par convection, conduction et de nouveau convection, et elle se conserve entre chaque section (**figure A5.13**):

$$\Phi = \Phi_{C1} = \Phi_{12} = \Phi_{C2}$$

avec:

$$\Phi_{C1} = h_{C1} S_1 (T_e - T_1) = \Phi \quad \text{(convection)}$$

$$\Phi_{12} = \lambda \frac{2\pi L}{\ln \frac{R_1}{R_2}} (T_1 - T_2) = \Phi \quad \text{(conduction)}$$

$$\Phi_{C2} = h_{C2} S_2 (T_2 - T_i) = \Phi \quad \text{(convection)}$$

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 105/111

que l'on réécrit sous la forme:

$$T_{e} - T_{1} = \frac{1}{h_{C1}S_{1}} \Phi$$
$$T_{1} - T_{2} = \frac{\ln(R_{1}/R_{2})}{2\pi L\lambda} \Phi$$
$$T_{2} - T_{i} = \frac{1}{h_{C2}S_{2}} \Phi$$

et en décomposant la différence de température:

$$T_e - T_i = R\Phi = (T_e - T_1) + (T_1 - T_2) + (T_2 - T_i)$$

où R est la résistance thermique. Comme les surfaces sont: $S_1 = 2\pi R_1 L$ et $S_2 = 2\pi R_2 L$, et compte tenu des relations ci-dessus pour les écarts en température, il vient:

$$R = \frac{1}{2\pi L} \left(\frac{1}{h_{\rm C1}R_1} + \frac{1}{\lambda} \ln \frac{R_1}{R_2} + \frac{1}{h_{\rm C2}R_2} \right) \quad (A5.20)$$

NB: - Lorsqu'un conduit contient un liquide en écoulement, un dépôt se forme sur la paroi interne 2 à long terme, ce qui augmente R (ajout d'un nouveau cylindre coaxial). Cette résistance supplémentaire est appelée coefficient d'encrassement: elle contribue à diminuer la puissance de transfert thermique, par exemple pour un dispositif de chauffage central.

A6 – CALCUL DU CHAMP THERMIQUE DE L'ABSORBEUR UTILE POUR LA DÉTERMINATION DU RENDEMENT RELATIF AU FLUIDE CALOPORTEUR

On a dit, au **paragraphe 1.2.2**, que pour connaître φ'_{u} il faut calculer:

- a) le champ de température $T_P(x,y)$ dans la plaque, qui se réduit à $T_P(x)$, puisque $T_P(x,y)$ est supposé uniforme suivant l'axe (y);
- b) la puissance absorbée par le fluide provenant de la plaque: ϕ_f ;
- c) l'égalité de cette puissance absorbée à la quantité de chaleur prise par le fluide, permet de déduire la température de sortie T_{sf};

L'objet de cette annexe 6 est de détailler ces calculs. On adopte les notations et la géométrie du problème de la **figure 9**.

a) Champ de température de la plaque de l'absorbeur T_P(x)

La variation de quantité de chaleur de la plaque est due au transfert conductif dans la plaque mais aussi au flux thermique transmis au fluide caloporteur.

L'équation de la chaleur pour la plaque s'écrit donc avec un terme source ϕ'_{u} :

$$\vec{j}_Q = -\lambda_P \overline{\text{grad}} T_P + \phi'_u \vec{e_Z}$$

d'où:

$$\rho_P c \frac{\partial T_P}{\partial t} = \lambda_P \nabla^2 T_P + \frac{\partial \Phi'_u}{\partial z}$$

où l'on suppose:

- le transfert au fluide φ'_{u} s'effectue perpendiculairement à la plaque, donc suivant $\vec{e_{Z}}$;
- ρ_P masse volumique de la plaque;
- $\lambda_{\rm P}$ conductivité thermique de la plaque;
- c chaleur massique de la plaque.

 T_P étant uniforme suivant (y) on a $\frac{\partial T_P}{\partial y} = 0$ donc le laplacien se réduit à: $\nabla^2 T_P = \frac{d^2 T_P}{dx^2}$;

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 106/111

Par ailleurs, L_P étant l'épaisseur de la plaque, supposée mince, on assimile:

$$\frac{\partial \Phi'_{u}}{\partial z} \approx \frac{\Phi'_{u}}{L_{P}} ;$$

L'équation de la chaleur devient alors:

$$\rho_P c \frac{\partial T_P}{\partial t} = \lambda_P \frac{\partial^2 T_P}{\partial x^2} + \frac{\Phi'_u}{L_P}$$

On s'intéresse aux solutions stationnaires (régime établi) donc $\varphi_t = 0$ (pas de flux thermique transitoire) et $\partial T_P / \partial t = 0$; finalement l'équation de transfert à résoudre est:

$$\frac{d^2 T_P}{dx^2} = -\frac{1}{\lambda_P L_P} \varphi'_u \quad (A6.1)$$

Le calcul de $T_P(x)$ doit tenir compte de la présence des tuyaux et de leurs fixations (soudures, colliers,...) à la plaque (**figure A6.1**).

Hypothèse: T_P est constante sur la largeur d'un tuyau et augmente au-dessus de l'espace séparant deux tuyaux voisins.

Distance entre deux tuyaux: 2X ;

température des fixations: T_R ;

diamètres extérieur et intérieur des tuyaux: D_e et D_i Dans l'équation de la chaleur (A6.1), ϕ'_u dépend de T_P puisque:

$$\varphi'_{u} = \varphi_{SP} - \varphi_{a} = \varphi_{SP} - k'_{a}(T_{P} - T_{a})$$

(A6.1) devient alors:

$$\frac{d^2 T_P}{dx^2} - \omega^2 \left(T_P - \left(\frac{\varphi_{SP}}{k'_a} + T_a \right) \right) = 0 \quad (A6.2)$$

avec:

$$\omega^2 = \frac{k'_a}{\lambda_p L_p}$$
 (A6.2 bis)

- bords parfaitement isolés: $\left(\frac{dT_P}{dx}\right)_{x=0} = 0$
- température de fixation T_R égale à la température de la plaque T_P sur la largeur du tuyau: T_P = T_R pour x = D_e;

la solution de (A6.2) est alors:

$$T_{P}(x) = T_{a} + \frac{\Phi_{SP}}{k'_{a}} + \left[T_{R} - \left(T_{a} + \frac{\Phi_{SP}}{k'_{a}}\right)\right] \frac{\cosh(\omega x)}{\cosh(\omega X)}$$
(A6.3)

b) Puissance absorbée par le fluide caloporteur

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 107/111

Dans une section de plaque recouvrant la largeur d'un tuyau, le flux thermique emporté par le fluide ϕ_f est égal aux flux apportés par conduction thermique par la plaque, aux bornes de cette section (ces flux

sont donnés par $\lambda_P L_P \left(\frac{dT_P}{dx}\right)_{x=X}$) et au flux utile sur la plaque $\varphi_u = \varphi_{SP} - \varphi_a$ (attention: ne pas

confondre ϕ_u avec ϕ'_u et ϕ_a avec ϕ'_a , ils ont été introduits dans le rendement de conversion au **paragraphe 1.2.1**) (figure A6.2).

figure A6.2 – bilan des flux entre la plaque, les fixations et les tuyaux

Les *surfaces de transfert ne sont pas les mêmes*: on doit donc utiliser les puissances et non plus leurs flux (qui sont des puissances par unité de surface):

$$d\Phi_f = (\Phi_{SP} - \Phi_a) D_e dy - 2\lambda_P L_P \left(\frac{dT}{dx}\right)_{x=Y} dy$$

d'où la puissance fournie au fluide par unité de longueur dy du tuyau:

$$\Phi_f *= \frac{d\Phi_f}{dy} = (\Phi_{SP} - \Phi_a) D_e - 2\lambda_P L_P \left(\frac{dT}{dx}\right)_{x=Y}$$

De (A6.3), pris en x = X, il vient, et en admettant que $k'_a \approx k_a$:

$$\Phi_{f}^{*} = (\Phi_{SP} - k'_{a}(T_{R} - T_{a}))(D_{e} + 2X\Psi) \quad (A6.4)$$

$$\Psi = \frac{\tanh(\omega X)}{\omega X} \quad (A6.4 \text{ bis})$$

avec:

Mais comme le rendement est relatif au fluide, on veut exprimer cette puissance par unité de longueur Φ^*_f en fonction de la température de sortie du fluide T_{sf} et non de T_R . Pour cela on décompose:

$$T_f - T_a = (T_f - T_R) + (T_R - T_a)$$

et en utilisant (A6.4):

$$T_{R} - T_{a} = \frac{1}{k'_{a}} \left(\varphi_{SP} - \frac{\Phi_{f}^{*}}{D_{e} + 2X\psi} \right)$$

Reste à déterminer ($T_f - T_R$). Soit Φ^*_{Rfc} la puissance par unité de longueur du tuyau de transfert par convection de la fixation (R) au fluide (f); cette transmission par convection s'effectue à travers le « périmètre mouillé » de l'eau dans le tuyau:

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 108/111
donc:

$$\Phi_{Rfc} *= h_{Rfc} P(T_R - T_f)$$

(h_{Rfc} : coefficient de transmission par convection (R) \rightarrow (f) : il dépend de la vitesse d'écoulement du fluide). Donc:

$$T_f - T_R = -\frac{\Phi_{Rfc}*}{h_{Rfc}P}$$

ce qui donne:

$$T_{f} - T_{a} = -\frac{\Phi_{Rfc}^{*}}{h_{Rfc}P} + \left(\phi_{SP} - \frac{\Phi_{f}^{*}}{D_{e} + 2X\psi} \right) \frac{1}{k'_{a}}$$

Or les milieux où s'effectuent le transfert thermique air (a) \rightarrow fluide (f) et fixation (R) \rightarrow fluide (f) sont en série: ils sont donc traversés par le même « courant » Φ^* , donc $\Phi_f^* = \Phi_{Rfc}^*$, donc, d'après ce qui précède, on a l'égalité:

$$\Phi_f * \left(\frac{k'_a}{P h_{Rfc}} + \frac{1}{D_e + 2X \psi} \right) = \Phi_{SP} - k'_a (T_f - T_a)$$

ce qui fournit:

$$\Phi_{f}^{*} = p_{0} F(\Phi_{SP}^{-} k'_{a}(T_{f}^{-} T_{a})) \quad (A6.5)$$

avec:

– pas des tuyaux:
$$p_0 = D_e + 2X$$
 (A6.6)

– rendement d'irrigation:

$$F = \frac{1}{\frac{p_0 k'_a}{P h_{Rfc}} + \frac{p_0}{D_e + 2 X \psi}}$$
(A6.7)

c) Température de sortie du fluide T_{sf}

On l'obtient en écrivant que la puissance reçue par le fluide dans le tuyau de longueur L_y est égale à la puissance d'échauffement du fluide:

$$q c_P dT_f = \Phi_f * dy$$

(q: débit massique). De (A6.5) il vient l'équation différentielle:

$$\frac{dT_f}{\frac{\Phi_{SP}}{k'_a} - T_f + T_a} = \frac{p_0 F k'_a}{qc_P} dy$$

que l'on intègre entre T_{ef} et T_{sf} pour T_{f} , et entre 0 et L_{y} pour y, ce qui donne:

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 109/111

$$\frac{T_{sf} - T_a - \frac{\Phi_{SP}}{k'_a}}{T_{ef} - T_a - \frac{\Phi_{SP}}{k'_a}} = \exp\left(-\frac{Fk'_a}{q^*c_P}\right) \quad (A6.8)$$

où le débit massique par unité de surface du capteur (en kg/s/m²) est: $q^* = \frac{q}{p_0 L_y}$ (A6.9) (²³).

Ainsi, la puissance utile fournie au fluide caloporteur par unité de surface du capteur est:

$$\varphi'_u = q * c_P (T_{sf} - T_{ef})$$

où T_{sf} est donnée par (A6.8).

Or il est plus aisé de mesurer T_{ef} et T_a que T_{sf} : on a donc intérêt à exprimer ϕ'_u avec ces températures. Pour cela on décompose: $T_{sf} = (T_{sf} - T_a) + T_a$, et en remplaçant T_{sf} par son expression donnée en (A6.8), il vient, tout calcul fait:

$$\phi'_{u} = F_{T}(\phi_{SP} - k'_{a}(T_{ef} - T_{a}))$$
 (A6.10)

où F_T est le ratio entre le flux thermique reçu effectivement par le fluide et le flux disponible sur l'absorbeur s'il était isotherme; on l'appelle *facteur de transfert thermique*:

$$F_T = \frac{q * c_P}{k'_a} \left(1 - \exp\left(-\frac{Fk'_a}{q * c_P}\right) \right) \quad (A6.11)$$

d) Rendement relatif au fluide caloporteur η"

C'est le rapport:

$$\eta'' = \frac{\Phi'_u}{\Phi_{ST}}$$

Comme $\Phi_{SP} = v^* \Phi_{ST}$, où v^* est le rendement optique du capteur, et compte tenu de (A6.10), il vient finalement:

$$\eta'' = F_T \left(v^* - k'_a \frac{T_{ef} - T_a}{\Phi_{ST}} \right)$$
 (A6.12)

de dimensions $L_x = L_0$ et L_y , on a le débit massique par unité de surface $q^* = \frac{\rho_F q_F}{L_0 L_y}$. Pour n tuyaux montés en

©Vincent Élie, Clément Marmion, Frédéric Élie – http://fred.elie.free.fr, janvier 2015 - page 110/111

²³ Soit q_F le débit volumique à l'entrée du capteur, le débit massique est donc $\rho_F q_F$. Ramené à l'unité de surface de la plaque,

parallèle, on a comme débit massique par tuyau $q = \rho_F q_F/n$, et comme $n = L_0/p_0$, il vient: $q = \rho_F q_F p_0/L_0$. Par conséquent le débit massique par unité de surface du capteur est égal au débit massique dans un tuyau par surface du domaine affecté au tuyau sur la plaque $S = p_0Ly$, soit: $q^* = q/S = \rho_F q_F p_0/L_0/p_0L_y = \rho_F q_F/L_0L_y$ qui est l'expression ci-dessus aussi égale à (A6.9); l'expression $q^* = \rho_F q_F/L_0L_y$ reste donc valable quel que soit le montage (parallèle ou série).

REFERENCES

Jacques Bernard: Énergie solaire, calculs et optimisation - Ellipses 2004

Alain Degiovanni: Transmission de l'énergie thermique; conduction – Techniques de l'ingénieur BE 8 200

Patrick Depecker, Christian Inard: Lois fondamentales en génie climatique – Techniques de l'ingénieur B 9 055

Jean-Pierre Faroux, Jacques Renault: thermodynamique, Dunod, Paris, 1997

Michel Feidt: Thermodynamique et optimisation énergétique des systèmes et procédés – TecDoc, 1996

Jacques Huetz, Jean-Pierre Petit: Notions de transfert thermique par convection – Techniques de l'ingénieur A 1 540

Magdeleine Huetz-Aubert: Rayonnement thermique des matériaux opaques – Techniques de l'ingénieur A 1 520

Yves Jannot: Thermique solaire – (article sur le web, octobre 2003)

André Joffre: Énergie solaire thermique dans le bâtiment; chauffe-eau solaire – Techniques de l'ingénieur, BE 9 164

Guy Lauriat, Dominique Gobin: Convection naturelle, cas particuliers – Techniques de l'ingénieur AF 4 081

Guy Lauriat, Dominique Gobin: Convection naturelle, aspects théoriques – Techniques de l'ingénieur AF 4 080

Bernard Le Neindre: Conductivité thermique des liquides et des gaz – Techniques de l'ingénieur K 427

Michel Matana: Plomberie: canalisations, sanitaires, gaz, eau chaude, bruits – Editions Alternatives 1997

Jacques Padet: Convection thermique et massique, principes généraux – Techniques de l'ingénieur BE 8 205

